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On correspondence between right near-domains and
sharply 2–transitive groups
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Abstract. The right near-domain is defined to loosen near-
domain axioms. Correspondence of a class of the right near-domains
and a class of sharply 2–transitive groups is constructed.
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In [1, 2] for exposition of sharply 2–transitive groups the concept near-domain

is introduced. Near-domain is an algebraic system (B, ·,+,−1, 0) with two bi-
nary operations ·,+ for which axioms hold:

1. (B,+) is a loop with a unit element 0;
2. a+ b = 0 ⇒ b+ a = 0;
3. (B1, ·,

−1) is a group with an unit element e, where B1 = B \ {0};
4. (∀x ∈ B) x · 0 = 0;
5. (∀x, y, z ∈ B) (x+ y) · z = x · z + y · z;
6. (∀a, b ∈ B)(∃ ra,b ∈ B1) (x+ a) + b = x · ra,b + (a+ b) for any x ∈ B.

Until recently it is not known any example of a near-domain which is not a
near-field. In the given work it is offered to loosen near-domain axioms, having
left only necessary ones for construction of sharply 2–transitive groups. In
particular, it is offered to refuse from axioms 2, 4 and to loosen axioms 1, 5.

Let’s define the right near-domain as algebraic system (B, ·,+,−,−1, 0) with
operations: (+) : B × B1 → B, (−) : B × B1 → B, (·) : B × B1 → B, where
B1 = B \ {0}, for which axioms are hold
A1. (∀x ∈ B)(∀y ∈ B1) (x− y) + y = x;
A2. (∀x ∈ B)(∀y ∈ B1) (x+ y)− y = x;
A3. (∀x ∈ B1) x− x = 0;
A4. (B1, ·,

−1) is a group with an unit element e ∈ B1;
A5. (∀x ∈ B)(∀y, z ∈ B1)(∃ h(y, z) ∈ B1) (x + y)z = xh(y, z) + yz;
A6. (∀x ∈ B)(∀y, z ∈ B1 : y + z 6= 0)(∃ r(y, z) ∈ B1) (x + y) + z = xr(y, z) +
(y + z);
A7. (∀x ∈ B)(∀z ∈ B1)(∃ v(z) ∈ B1) (x+ (0− z)) + z = xv(z).

Axioms A1—A3 define algebraic system (B,+,−, 0) as the right loop. We
define labels L(x) = 0 − x then from A1 follows L(x) + x = 0. Thus the map
L : B1 → B1 defines left inverse in the right loop.

Let’s consider now the elementary consequences of axioms.
Lemma. In the right near-domain the following properties hold:

1. (∀x ∈ B1) 0x = 0;
2. h(x, y) = EL(x)L(xy), where E(x) = x−1, EL — superposition of transfor-

mations L and E;

3. r(y, z) = E(L(z)− y)L(y + z);
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4. x− z = xEv(z) + L(z);
5. v(z) = EL2(z)z

Let’s define a map u : B1 → B by the rule u(x) = 0x.
From A5 follows, that (∀x, y ∈ B1) (L(x) + x)y = L(x)h(x, y) + xy = u(y),

hence
h(x, y) = EL(x)(u(y)− xy). (1)

If we will sequentially apply A5 for arbitrary z, t ∈ B1 then we receive:

h(y, z)h(yz, t) = h(y, zt).

Let’s write the given equality applying the expression (1). With the reduction
account, we will receive equality : (u(z)−yz)EL(yz) = e, hence, u(z) = L(yz)+
yz = 0. Thus, the first and second conditions of the lemma are satisfied.

Let’s consider now consequences from A6. Let x = L(y + z)(r(y, z))−1 ⇒
(L(y + z)(r(y, z))−1 + y) + z = 0, whence we will receive the expression from
the third condition of the lemma.

In the case when y + z = 0, we will consider consequences from A7 and A2:
x + L(z) = xv(z) − z. We define x′ = xv(z), hence the fourth condition of the
lemma is fulfilled x′E(v(z)) + L(z) = x′ − z.

Let’s note A2 with the condition of the received expression (x + z) − z =
(x+ z)Ev(z) + L(z) = x. At x = 0 we will receive equality zEv(z) + L(z) = 0.
Then with the account L2(x) = LL(x), we will come to justice of the fifth
condition of the lemma. �

The operation ”−” is expressed through the operations ”+”, ”·”, L, E hence
we will understand algebraic system (B, ·,+,−,−1, 0) as (B, ·,+,−1, L, 0).

Let’s consider the algebraic system (H, ·, φ,−1, 0) from [3], with the opera-
tions:

(·) : H ×H1 → H,φ : H → H, where H1 = H \ {0},

for which the following axioms are fulfilled:
F1. (H1, ·,

−1) is a group with an unit element e;
F2. 0x = 0, x ∈ H1;
F3. φ(e) = 0;
F4. φ(φ(x)φ(y)) = φ(xφ(y−1))y, x ∈ H, y ∈ H1 \ {e1},

The similar algebraic system was investigated in [4].
Theorem 1. The class of algebraic systems (B, ·,+,−1, L, 0) and (B, ·,−1, φ, 0)
are rational equivalent.

Let’s introduce a map φ : B → B, defined in an aspect φ(x) = x(0 − e) + e =
xa+e. Let’s calculate quadrate of function φ taking into account the conditions
two and five of the lemma:

φ2(x) = (xa+ e)a+ e = (xL(a) + a) + e = xL(a)EL2(e) = x.

From the definition follows φ(e) = a + e = 0 and φ(0) = e. By means of the
map φ it is possible to express additive operation. Really, φ(x)y = (xa+ e)y =
xL(y) + y, hence, if x = zEL(y), then z + y = ϕ(zEL(y))y. Let’s rewrite now
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identity from A2: z = (z + y)− y = φ(zEL(y))y − y. Having introduced labels
t = φ(zEL(y))y, we express z = φ(ty−1)L(y), then t− y = φ(ty−1)L(y).

Calculating the value t = (x + z) − (y + z) in the case y 6= L(z), using
at first A2: (x + z) = t + (y + z), and then the third identity of the lemma:
(x+ z) = (t(r(y, z))−1 + y) + z. Applying twice identity from A2, we have the
identity:

(x + z)− (y + z) = (x − y)(L(z)− y)−1L(y + z).

Let’s rewrite the given identity with the account y 6= e, z = L−1(e) replacing
additive binary operations by their expressions through the function φ:

φ(φ(x)Eφ(y)) = φ(xy−1)EφE(y) = φ(xy−1)EφE(y). (2)

At x = 0 this identity takes a simple form φEφ(y) = EφE(y), using it, we note
identity (2) for y = EφE(t):

φ(φ(x)φ(t)) = φ(xφE(t))t. (3)

Thus, we have the map A : (B, ·,+,−1, L, 0) → (B, ·,−1, φ, 0).
Let’s make the inverse construction. We will consider expression from F4

at x = e, y = t−1, then under condition F2 and F3 we come to equality
ϕ2(t) = ϕ(0)t. On one hand ϕ4(t) = (ϕ(0))2t, and on the other hand ϕ4(t) =
ϕ(ϕ2(ϕ(t))) = ϕ(ϕ(0)ϕ(t)). It is also possible to note the last expression with
the account F4 and F2: ϕ(ϕ(0)ϕ(t)) = ϕ(0ϕ(t−1))t = ϕ(0)t. Thus, we come to
equality ϕ2(0) = ϕ(0), hence, ϕ(0) = e and ϕ2(t) = t.

From F4 for x = EϕE(y) follows, that (∀y ∈ B1 \ {e}) ϕEϕ(y) = EϕE(y).
By means of arbitrary bijection L : B1 → B1 we introduce operations

x+ y = ϕ(xEL(y))y, x− y = ϕ(xy−1)L(y).

With the account of F2, F3 and ϕ2 = id it is easy to check up the performance
of the axioms A1—A3 of the right loop. The performance A5 follows from the
operation definition:

(x+ y)z = ϕ(xEL(y))yz = ϕ(xEL(y)L(yz)EL(yz))yz = xEL(y)L(yz) + yz.

Then we take advantage of identities ϕ2 = id, ϕEϕ = EϕE and F4 to receive
A6:

(x+ y) + z = ϕ(ϕ(xEL(y))yEL(z))z =

ϕ(xEL(y)ϕEϕ(yEL(z)))ϕ(yEL(z))z =

ϕ(xEL(y)ϕEϕ(yEL(z))L[ϕ(yEL(z))z]EL[ϕ(yEL(z))z])ϕ(yEL(z))z =

xEL(y)ϕEϕ(yEL(z))L[ϕ(yEL(z))z] + (y + z) =

xE(ϕ(L(z)E(y))L(y))L[ϕ(yEL(z))z]+(y+z) = xE(L(z)−y)L(y+z)+(y+z).

Now we take advantage of identity ϕ2 = id for construction of expression A7:

(x+ L(z)) + z = ϕ(ϕ(xEL2(z))L(z)EL(z))z = ϕ2(xEL2(z))z = xEL2(z)z.
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For any bijection L we have constructed the map FL : (B, ·,−1, ϕ, 0) → (B, ·,+,−1,

L, 0) so, that the algebraic systems (B, ·,−1, ϕ, 0) and A ◦ FL(B, ·,−1, ϕ, 0) are
isomorphic. In the opposite direction the algebraic systems (B, ·,+′,−1, L′, 0)
and FL ◦ A(B1, 0, L

′, ·,+′) are isomorphic only at L = L′. �

The group T2(B) of transformations of a set B is called sharply 2–transitive

group, if for arbitrary pairs (x1, x2) 6= (y1, y2) ∈ B̂2, where B̂2 = B2\{(x, x)|x ∈
B} there exists an unique element g ∈ T2(B) for which the equalities g(x1) = y1
and g(x2) = y2 are held.

Theorem 2. The class of algebraic systems (B, ·,−1, ϕ, 0) and the class of

sharply 2–transitive groups T2(B) are rational equivalent.

On the set B̂2 we define a function f : B × B̂2 → B as

f(x, y1, y2) = ϕ(xϕ(y1y
−1
2 ))y2, (4)

if y2 6= 0 and f(x, y1, 0) = xy1 otherwise. Not to consider two cases separately,
we, by means of multiplicative partial operation (·) : B × B1 → B, define the
groupoid on B so, that (∀x ∈ B) x0 = ϕ(x), 0−1 = 0.

Let’s define a binary operation G on the set B̂2 in the form
(

x1

x2

)(
y1
y2

)
=

(
f(x1, y1, y2)
f(x2, y1, y2)

)
=

(
ϕ(x1ϕ(y1y

−1
2 ))y2

ϕ(x2ϕ(y1y
−1
2 ))y2

)
. (5)

Supposing, that there are pairs (x1, x2) 6= (y1, y2) ∈ B̂2, that f(x1, y1, y2) =
f(x2, y1, y2). Then, for y2 6= 0 after multiplication of the both parts of equal-
ity on y−1

2 and transformations by the function ϕ, we will come to equality
x1ϕ(y1y

−1
2 ) = x2ϕ(y1y

−1
2 ) from which follows, that x1 = x2. At y2 = 0 we get

the equality x1y1 = x2y1, hence, x1 = x2. We have come to an inconsistency.
Thus, the operation G, defined above, is a magma.

It is easy to check, that the pair (e, 0) ∈ B̂2 is the left and the right unit
element. Now we check the associativity:

ϕ(ϕ(xiϕ(y1y
−1
2 ))y2ϕ(z1z

−1
2 ))z2 = ϕ(ϕ(xiϕ(y1y

−1
2 ))ϕϕ(y2ϕ(z1z

−1
2 )))z2 =

ϕ(xiϕ(y1y
−1
2 )ϕEϕ(y2ϕ(z1z

−1
2 )))ϕ(y2ϕ(z1z

−1
2 ))z2 =

ϕ(xiϕ(y1ϕ(z1z
−1
2 )Eϕ(y2ϕ(z1z

−1
2 )))ϕ(y2ϕ(z1z

−1
2 ))z2.

We have come to a semigroup with a unit element. We will discover now the
left inverse:

(
x1

x2

)
−1 (

x1

x2

)
=

(
ϕ(x−1

2 )Eϕ(x1x
−1
2 )

Eϕ(x1x
−1
2 )

)(
x1

x2

)
=

(
e

0

)
.

Let’s check that it is also the right inverse:

ϕ(xiϕ(ϕ(x
−1
2 )Eϕ(x1x

−1
2 )ϕ(x1x

−1
2 )))Eϕ(x1x

−1
2 ) = ϕ(xix

−1
2 )Eϕ(x1x

−1
2 ).

Thus, we defined that G is a group, but since it operates on the set B̂2 sharply
transitive, then the group G at an operation on the set B it will be sharply
2–transitive, hence, we have constructed the map G : (B, ·,−1, ϕ, 0) → T2(B).
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Now we make the inverse construction and on a group T2(B) we will construct

an algebraic system (B, ·,−1, φ, 0). For an arbitrary pair (e1, e2) ∈ B̂2 it is

possible to construct the bijective map T2(B) → B̂2, putting in correspondence
to an element g ∈ T2(B) the pair [x1, x2] so that

(e1, e2) · g = (e1, e2) · [x1, x2] = (e1 · [x1, x2], e2 · [x1, x2]) = (x1, x2). (6)

The given bijection induces the isomorphic group G ≃ T2(B) on the set of pairs

B̂2. The pair [e1, e2] is an unit of the group G.
At serial transformation of the pair (e1, e2) by elements [x1, x2] and [y1, y2]

we come to equality:

[x1, x2][y1, y2] = [x1 · [y1, y2], x2 · [y1, y2]], (7)

from which, with the account (6), follows, that on a subset B1 = {x ∈ B|[x, e2] ∈
G} it is possible to introduce the group structure naturally. The map e1·[x, e2] 7→
x induces on B1 a group structure. Multiplication in the group B1, as well as
in the group T2(B) we will write without a point. We will expand the group
operation to a partial operation B × B1 → B, having predetermined it in an
aspect e2y = e2 · [y, e2] = e2 so, that e2 will be the left zero in a partial operation
(·) : B ×B1 → B.

From (6) and (7) follows,[e2, e1] is an involution of G. We define φ : B → B

in an aspect φ(x) = x · [e2, e1], then φ(e1) = e2 and

[e2, e1][x2, x1] = [x1, x2] = [φ(x1), φ(x2)][e2, e1]. (8)

For an arbitrary [e1, x2] ∈ G, at x2 ∈ B1 \ {e1} it is possible to note:

[e1, x2] = [x−1
2 , e1][x2, e2] = [φ(x−1

2 ), e2][e2, e1][x2, e2].

On the other hand, with the account (8) for [e1, x2] it is fair

[e1, x2] = [e2, e1][ϕ(x2), e2][e2, e1].

Having taken advantage of the two received expressions and equating outcomes
of transformation arbitrary t ∈ B by element [e1, x2] ∈ G, we come to identity:

φ(φ(t)φ(x2)) = φ(tφ(x−1
2 ))x2, t ∈ B, x2 ∈ B1 \ {e1}.

The map F(e1,e2) : T2(B) → (B, ·,−1, φ, 0) is constructed, putting in correspon-
dence to group T2(B) algebraic system (B, ·,−1, φ, 0).

Let’s notice still, that for arbitrary [x1, x2] ∈ T2(B) it is possible to note:

[x1, x2] =

{
[φ(x1x

−1
2 ), e2][e2, e1][x2, e2], x2 ∈ B1,

[x1, e2] , x2 = e2.

Then for arbitrary t ∈ B under condition of x2 6= e2 and t · [x1, e2] = tx1 the
equality:

t · [x1, x2] = t · [φ(x1x
−1
2 ), e2][e2, e1][x2, e2] = φ(tφ(x1x

−1
2 ))x2 (9)
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is fair. Comparing (4), (5) with (9) and (7) we come to that there is a natural
isomorphism G ◦ F(e1,e2) : T2(B) → T ′

2(B), thus G ◦ F(e1,e2) = id. Isomorphism
of algebraic systems F(e1,e2) ◦G : (B, ·,−1, φ, 0) → (B′, ·′,−1, φ, e2) is set by map

F(e1,e2) ◦G : x 7→ ϕ(xϕ(e1e
−1
2 ))e2, thus F(e1,e2) ◦G = id. �

Let’s consider some examples of the right near-domains constructed over a
skew field K for which ϕ(x) = −x+ 1, x ∈ K. As the first example we consider
L(x) = ax:

x⊕ y = −xa−1 + y, x⊖ y = −xa+ ay, r(y, z) = −a−1, v(z) = a−2.

In such right near-domain bilaterial distributivity is fulfilled and the identity
L(x ⊕ y) = L(x) ⊕ L(y) is hold. For the second example over a skew field we
consider L(x) = −x−1, then

x⊕y = xy2+y, x⊖y = xy−2−y−1, r(y, z) = y2z(z+y)−1(yz+1), h(y, z) = z−1.

For the given right loop L(x ⊕ y) 6= L(x) ⊕ L(y), but it is fulfilled L(x) ⊕ x =
x⊕ L(x) = 0.
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