On correspondence between right near-domains and sharply 2–transitive groups Andrey A. Simonov

a.simonov@g.nsu.ru

ABSTRACT. The right near-domain is defined to loosen neardomain axioms. Correspondence of a class of the right near-domains and a class of sharply 2–transitive groups is constructed.

Keywords: near-domain, sharply 2-transitive groups.

In [1, 2] for exposition of sharply 2-transitive groups the concept near-domain is introduced. Near-domain is an algebraic system $(B, \cdot, +, ^{-1}, 0)$ with two binary operations $\cdot, +$ for which axioms hold:

1. (B, +) is a loop with a unit element 0;

- 2. $a + b = 0 \Rightarrow b + a = 0;$
- 3. $(B_1, \cdot, {}^{-1})$ is a group with an unit element e, where $B_1 = B \setminus \{0\}$;
- 4. $(\forall x \in B) \quad x \cdot 0 = 0;$
- 5. $(\forall x, y, z \in B)$ $(x+y) \cdot z = x \cdot z + y \cdot z;$

6. $(\forall a, b \in B) (\exists r_{a,b} \in B_1)$ $(x+a) + b = x \cdot r_{a,b} + (a+b)$ for any $x \in B$.

Until recently it is not known any example of a near-domain which is not a near-field. In the given work it is offered to loosen near-domain axioms, having left only necessary ones for construction of sharply 2-transitive groups. In particular, it is offered to refuse from axioms 2, 4 and to loosen axioms 1, 5.

Let's define the right near-domain as algebraic system $(B, \cdot, +, -, {}^{-1}, 0)$ with operations: $(+): B \times B_1 \to B, (-): B \times B_1 \to B, (\cdot): B \times B_1 \to B$, where $B_1 = B \setminus \{0\}$, for which axioms are hold

A1. $(\forall x \in B)(\forall y \in B_1) (x - y) + y = x;$

- A2. $(\forall x \in B)(\forall y \in B_1) (x+y) y = x;$
- A3. $(\forall x \in B_1) \ x x = 0;$
- A4. $(B_1, \cdot, -1)$ is a group with an unit element $e \in B_1$;
- A5. $(\forall x \in B)(\forall y, z \in B_1)(\exists h(y, z) \in B_1) (x + y)z = xh(y, z) + yz;$
- A6. $(\forall x \in B)(\forall y, z \in B_1 : y + z \neq 0)(\exists r(y, z) \in B_1) (x + y) + z = xr(y, z) + (y + z);$

A7. $(\forall x \in B)(\forall z \in B_1)(\exists v(z) \in B_1) (x + (0 - z)) + z = xv(z).$

Axioms A1—A3 define algebraic system (B, +, -, 0) as the right loop. We define labels L(x) = 0 - x then from A1 follows L(x) + x = 0. Thus the map $L: B_1 \to B_1$ defines left inverse in the right loop.

Let's consider now the elementary consequences of axioms.

Lemma. In the right near-domain the following properties hold:

1. $(\forall x \in B_1) \ 0x = 0;$

2. h(x,y) = EL(x)L(xy), where $E(x) = x^{-1}$, EL — superposition of transformations L and E;

3. r(y,z) = E(L(z) - y)L(y + z);

4. x - z = xEv(z) + L(z);

5. $v(z) = EL^2(z)z$

Let's define a map $u: B_1 \to B$ by the rule u(x) = 0x.

From A5 follows, that $(\forall x, y \in B_1) (L(x) + x)y = L(x)h(x, y) + xy = u(y)$, hence

$$h(x,y) = EL(x)(u(y) - xy).$$
 (1)

If we will sequentially apply A5 for arbitrary $z, t \in B_1$ then we receive:

$$h(y,z)h(yz,t) = h(y,zt).$$

Let's write the given equality applying the expression (1). With the reduction account, we will receive equality : (u(z) - yz)EL(yz) = e, hence, u(z) = L(yz) + yz = 0. Thus, the first and second conditions of the lemma are satisfied.

Let's consider now consequences from A6. Let $x = L(y+z)(r(y,z))^{-1} \Rightarrow (L(y+z)(r(y,z))^{-1} + y) + z = 0$, whence we will receive the expression from the third condition of the lemma.

In the case when y + z = 0, we will consider consequences from A7 and A2: x + L(z) = xv(z) - z. We define x' = xv(z), hence the fourth condition of the lemma is fulfilled x'E(v(z)) + L(z) = x' - z.

Let's note A2 with the condition of the received expression (x + z) - z = (x + z)Ev(z) + L(z) = x. At x = 0 we will receive equality zEv(z) + L(z) = 0. Then with the account $L^2(x) = LL(x)$, we will come to justice of the fifth condition of the lemma.

The operation "-" is expressed through the operations "+", ".", L, E hence we will understand algebraic system $(B, \cdot, +, -, ^{-1}, 0)$ as $(B, \cdot, +, ^{-1}, L, 0)$.

Let's consider the algebraic system $(H, \cdot, \phi, {}^{-1}, 0)$ from [3], with the operations:

 $(\cdot): H \times H_1 \to H, \phi: H \to H, \text{ where } H_1 = H \setminus \{0\},\$

for which the following axioms are fulfilled:

F1. $(H_1, \cdot, {}^{-1})$ is a group with an unit element e;

F2. $0x = 0, x \in H_1;$

F3. $\phi(e) = 0;$

F4. $\phi(\phi(x)\phi(y)) = \phi(x\phi(y^{-1}))y, x \in H, y \in H_1 \setminus \{e_1\},$

The similar algebraic system was investigated in [4].

Theorem 1. The class of algebraic systems $(B, \cdot, +, ^{-1}, L, 0)$ and $(B, \cdot, ^{-1}, \phi, 0)$ are rational equivalent.

Let's introduce a map $\phi : B \to B$, defined in an aspect $\phi(x) = x(0 - e) + e = xa + e$. Let's calculate quadrate of function ϕ taking into account the conditions two and five of the lemma:

$$\phi^2(x) = (xa + e)a + e = (xL(a) + a) + e = xL(a)EL^2(e) = x.$$

From the definition follows $\phi(e) = a + e = 0$ and $\phi(0) = e$. By means of the map ϕ it is possible to express additive operation. Really, $\phi(x)y = (xa + e)y = xL(y) + y$, hence, if x = zEL(y), then $z + y = \varphi(zEL(y))y$. Let's rewrite now

identity from A2: $z = (z + y) - y = \phi(zEL(y))y - y$. Having introduced labels $t = \phi(zEL(y))y$, we express $z = \phi(ty^{-1})L(y)$, then $t - y = \phi(ty^{-1})L(y)$.

Calculating the value t = (x + z) - (y + z) in the case $y \neq L(z)$, using at first A2: (x + z) = t + (y + z), and then the third identity of the lemma: $(x + z) = (t(r(y, z))^{-1} + y) + z$. Applying twice identity from A2, we have the identity:

$$(x+z) - (y+z) = (x-y)(L(z)-y)^{-1}L(y+z).$$

Let's rewrite the given identity with the account $y \neq e, z = L^{-1}(e)$ replacing additive binary operations by their expressions through the function ϕ :

$$\phi(\phi(x)E\phi(y)) = \phi(xy^{-1})E\phi E(y) = \phi(xy^{-1})E\phi E(y).$$
 (2)

At x = 0 this identity takes a simple form $\phi E \phi(y) = E \phi E(y)$, using it, we note identity (2) for $y = E \phi E(t)$:

$$\phi(\phi(x)\phi(t)) = \phi(x\phi E(t))t. \tag{3}$$

Thus, we have the map $\mathbb{A}: (B, \cdot, +, {}^{-1}, L, 0) \to (B, \cdot, {}^{-1}, \phi, 0).$

Let's make the inverse construction. We will consider expression from F4 at $x = e, y = t^{-1}$, then under condition F2 and F3 we come to equality $\varphi^2(t) = \varphi(0)t$. On one hand $\varphi^4(t) = (\varphi(0))^2 t$, and on the other hand $\varphi^4(t) = \varphi(\varphi^2(\varphi(t))) = \varphi(\varphi(0)\varphi(t))$. It is also possible to note the last expression with the account F4 and F2: $\varphi(\varphi(0)\varphi(t)) = \varphi(0\varphi(t^{-1}))t = \varphi(0)t$. Thus, we come to equality $\varphi^2(0) = \varphi(0)$, hence, $\varphi(0) = e$ and $\varphi^2(t) = t$.

From F4 for $x = E\varphi E(y)$ follows, that $(\forall y \in B_1 \setminus \{e\}) \varphi E\varphi(y) = E\varphi E(y)$. By means of arbitrary bijection $L: B_1 \to B_1$ we introduce operations

$$x + y = \varphi(xEL(y))y, \ x - y = \varphi(xy^{-1})L(y).$$

With the account of F2, F3 and $\varphi^2 = id$ it is easy to check up the performance of the axioms A1—A3 of the right loop. The performance A5 follows from the operation definition:

$$(x+y)z = \varphi(xEL(y))yz = \varphi(xEL(y)L(yz)EL(yz))yz = xEL(y)L(yz) + yz.$$

Then we take advantage of identities $\varphi^2 = id$, $\varphi E \varphi = E \varphi E$ and F4 to receive A6:

$$\begin{split} (x+y)+z &= \varphi(\varphi(xEL(y))yEL(z))z = \\ \varphi(xEL(y)\varphi E\varphi(yEL(z)))\varphi(yEL(z))z = \\ \varphi(xEL(y)\varphi E\varphi(yEL(z))L[\varphi(yEL(z))z]EL[\varphi(yEL(z))z])\varphi(yEL(z))z = \\ xEL(y)\varphi E\varphi(yEL(z))L[\varphi(yEL(z))z] + (y+z) = \end{split}$$

 $xE(\varphi(L(z)E(y))L(y))L[\varphi(yEL(z))z] + (y+z) = xE(L(z)-y)L(y+z) + (y+z).$ Now we take advantage of identity $\varphi^2 = id$ for construction of expression A7:

$$(x + L(z)) + z = \varphi(\varphi(xEL^2(z))L(z)EL(z))z = \varphi^2(xEL^2(z))z = xEL^2(z)z$$

For any bijection L we have constructed the map $\mathbb{F}_L : (B, \cdot, {}^{-1}, \varphi, 0) \to (B, \cdot, +, {}^{-1}, L, 0)$ so, that the algebraic systems $(B, \cdot, {}^{-1}, \varphi, 0)$ and $\mathbb{A} \circ \mathbb{F}_L(B, \cdot, {}^{-1}, \varphi, 0)$ are isomorphic. In the opposite direction the algebraic systems $(B, \cdot, +', {}^{-1}, L', 0)$ and $\mathbb{F}_L \circ \mathbb{A}(B_1, 0, L', \cdot, +')$ are isomorphic only at L = L'. \Box

The group $T_2(B)$ of transformations of a set B is called sharply 2-transitive group, if for arbitrary pairs $(x_1, x_2) \neq (y_1, y_2) \in \widehat{B^2}$, where $\widehat{B^2} = B^2 \setminus \{(x, x) | x \in B\}$ there exists an unique element $g \in T_2(B)$ for which the equalities $g(x_1) = y_1$ and $g(x_2) = y_2$ are held.

Theorem 2. The class of algebraic systems $(B, \cdot, {}^{-1}, \varphi, 0)$ and the class of sharply 2-transitive groups $T_2(B)$ are rational equivalent. On the set $\widehat{B^2}$ we define a function $f: B \times \widehat{B^2} \to B$ as

$$f(x, y_1, y_2) = \varphi(x\varphi(y_1y_2^{-1}))y_2, \tag{4}$$

if $y_2 \neq 0$ and $f(x, y_1, 0) = xy_1$ otherwise. Not to consider two cases separately, we, by means of multiplicative partial operation $(\cdot) : B \times B_1 \to B$, define the groupoid on B so, that $(\forall x \in B) x_0 = \varphi(x), 0^{-1} = 0$.

Let's define a binary operation G on the set $\widehat{B^2}$ in the form

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} f(x_1, y_1, y_2) \\ f(x_2, y_1, y_2) \end{pmatrix} = \begin{pmatrix} \varphi(x_1 \varphi(y_1 y_2^{-1}))y_2 \\ \varphi(x_2 \varphi(y_1 y_2^{-1}))y_2 \end{pmatrix}.$$
(5)

Supposing, that there are pairs $(x_1, x_2) \neq (y_1, y_2) \in \widehat{B^2}$, that $f(x_1, y_1, y_2) = f(x_2, y_1, y_2)$. Then, for $y_2 \neq 0$ after multiplication of the both parts of equality on y_2^{-1} and transformations by the function φ , we will come to equality $x_1\varphi(y_1y_2^{-1}) = x_2\varphi(y_1y_2^{-1})$ from which follows, that $x_1 = x_2$. At $y_2 = 0$ we get the equality $x_1y_1 = x_2y_1$, hence, $x_1 = x_2$. We have come to an inconsistency. Thus, the operation G, defined above, is a magma.

It is easy to check, that the pair $(e, 0) \in B^2$ is the left and the right unit element. Now we check the associativity:

$$\begin{aligned} \varphi(\varphi(x_i\varphi(y_1y_2^{-1}))y_2\varphi(z_1z_2^{-1}))z_2 &= \varphi(\varphi(x_i\varphi(y_1y_2^{-1}))\varphi\varphi(y_2\varphi(z_1z_2^{-1})))z_2 = \\ \varphi(x_i\varphi(y_1y_2^{-1})\varphi E\varphi(y_2\varphi(z_1z_2^{-1})))\varphi(y_2\varphi(z_1z_2^{-1}))z_2 = \\ \varphi(x_i\varphi(y_1\varphi(z_1z_2^{-1})E\varphi(y_2\varphi(z_1z_2^{-1})))\varphi(y_2\varphi(z_1z_2^{-1}))z_2. \end{aligned}$$

We have come to a semigroup with a unit element. We will discover now the left inverse:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{-1} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \varphi(x_2^{-1}) E \varphi(x_1 x_2^{-1}) \\ E \varphi(x_1 x_2^{-1}) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} e \\ 0 \end{pmatrix}.$$

Let's check that it is also the right inverse:

$$\varphi(x_i\varphi(\varphi(x_2^{-1})E\varphi(x_1x_2^{-1})\varphi(x_1x_2^{-1})))E\varphi(x_1x_2^{-1}) = \varphi(x_ix_2^{-1})E\varphi(x_1x_2^{-1}).$$

Thus, we defined that G is a group, but since it operates on the set $\widehat{B^2}$ sharply transitive, then the group G at an operation on the set B it will be sharply 2-transitive, hence, we have constructed the map $\mathbb{G} : (B, \cdot, {}^{-1}, \varphi, 0) \to T_2(B)$.

Now we make the inverse construction and on a group $T_2(B)$ we will construct an algebraic system $(B, \cdot, {}^{-1}, \phi, 0)$. For an arbitrary pair $(e_1, e_2) \in \widehat{B^2}$ it is possible to construct the bijective map $T_2(B) \to \widehat{B^2}$, putting in correspondence to an element $g \in T_2(B)$ the pair $[x_1, x_2]$ so that

$$(e_1, e_2) \cdot g = (e_1, e_2) \cdot [x_1, x_2] = (e_1 \cdot [x_1, x_2], e_2 \cdot [x_1, x_2]) = (x_1, x_2).$$
(6)

The given bijection induces the isomorphic group $G \simeq T_2(B)$ on the set of pairs $\widehat{B^2}$. The pair $[e_1, e_2]$ is an unit of the group G.

At serial transformation of the pair (e_1, e_2) by elements $[x_1, x_2]$ and $[y_1, y_2]$ we come to equality:

$$[x_1, x_2][y_1, y_2] = [x_1 \cdot [y_1, y_2], x_2 \cdot [y_1, y_2]], \tag{7}$$

from which, with the account (6), follows, that on a subset $B_1 = \{x \in B | [x, e_2] \in G\}$ it is possible to introduce the group structure naturally. The map $e_1 \cdot [x, e_2] \mapsto x$ induces on B_1 a group structure. Multiplication in the group B_1 , as well as in the group $T_2(B)$ we will write without a point. We will expand the group operation to a partial operation $B \times B_1 \to B$, having predetermined it in an aspect $e_2y = e_2 \cdot [y, e_2] = e_2$ so, that e_2 will be the left zero in a partial operation $(\cdot) : B \times B_1 \to B$.

From (6) and (7) follows, $[e_2, e_1]$ is an involution of G. We define $\phi : B \to B$ in an aspect $\phi(x) = x \cdot [e_2, e_1]$, then $\phi(e_1) = e_2$ and

$$[e_2, e_1][x_2, x_1] = [x_1, x_2] = [\phi(x_1), \phi(x_2)][e_2, e_1].$$
(8)

For an arbitrary $[e_1, x_2] \in G$, at $x_2 \in B_1 \setminus \{e_1\}$ it is possible to note:

$$[e_1, x_2] = [x_2^{-1}, e_1][x_2, e_2] = [\phi(x_2^{-1}), e_2][e_2, e_1][x_2, e_2].$$

On the other hand, with the account (8) for $[e_1, x_2]$ it is fair

$$[e_1, x_2] = [e_2, e_1][\varphi(x_2), e_2][e_2, e_1]$$

Having taken advantage of the two received expressions and equating outcomes of transformation arbitrary $t \in B$ by element $[e_1, x_2] \in G$, we come to identity:

$$\phi(\phi(t)\phi(x_2)) = \phi(t\phi(x_2^{-1}))x_2, \ t \in B, x_2 \in B_1 \setminus \{e_1\}.$$

The map $\mathbb{F}_{(e_1,e_2)}: T_2(B) \to (B, \cdot, {}^{-1}, \phi, 0)$ is constructed, putting in correspondence to group $T_2(B)$ algebraic system $(B, \cdot, {}^{-1}, \phi, 0)$.

Let's notice still, that for arbitrary $[x_1, x_2] \in T_2(B)$ it is possible to note:

$$[x_1, x_2] = \begin{cases} [\phi(x_1 x_2^{-1}), e_2][e_2, e_1][x_2, e_2], & x_2 \in B_1, \\ [x_1, e_2], & x_2 = e_2. \end{cases}$$

Then for arbitrary $t \in B$ under condition of $x_2 \neq e_2$ and $t \cdot [x_1, e_2] = tx_1$ the equality:

$$t \cdot [x_1, x_2] = t \cdot [\phi(x_1 x_2^{-1}), e_2][e_2, e_1][x_2, e_2] = \phi(t\phi(x_1 x_2^{-1}))x_2$$
(9)

is fair. Comparing (4), (5) with (9) and (7) we come to that there is a natural isomorphism $\mathbb{G} \circ \mathbb{F}_{(e_1,e_2)} : T_2(B) \to T'_2(B)$, thus $\mathbb{G} \circ \mathbb{F}_{(e_1,e_2)} = id$. Isomorphism of algebraic systems $\mathbb{F}_{(e_1,e_2)} \circ \mathbb{G} : (B, \cdot, {}^{-1}, \phi, 0) \to (B', \cdot', {}^{-1}, \phi, e_2)$ is set by map $\mathbb{F}_{(e_1,e_2)} \circ \mathbb{G} : x \mapsto \varphi(x\varphi(e_1e_2^{-1}))e_2$, thus $\mathbb{F}_{(e_1,e_2)} \circ \mathbb{G} = id$.

Let's consider some examples of the right near-domains constructed over a skew field K for which $\varphi(x) = -x + 1$, $x \in \mathbb{K}$. As the first example we consider L(x) = ax:

$$x \oplus y = -xa^{-1} + y, \ x \ominus y = -xa + ay, \ r(y,z) = -a^{-1}, \ v(z) = a^{-2}.$$

In such right near-domain bilaterial distributivity is fulfilled and the identity $L(x \oplus y) = L(x) \oplus L(y)$ is hold. For the second example over a skew field we consider $L(x) = -x^{-1}$, then

$$x\oplus y = xy^2 + y, \ x \ominus y = xy^{-2} - y^{-1}, \ r(y,z) = y^2 z(z+y)^{-1}(yz+1), \ h(y,z) = z^{-1}.$$

For the given right loop $L(x \oplus y) \neq L(x) \oplus L(y)$, but it is fulfilled $L(x) \oplus x = x \oplus L(x) = 0$.

References

- Karzel H. Inzidenzgruppen I. Lecture Notes by Pieper, I. and Sorensen, K., University of Hamburg (1965), 123-135.
- [2] Karzel H. Zusammenhange zwischen Fastbereichen, scharf zweifach transitiven Permutationsgruppen und 2-Strukturen mit Rechtecksaxiom, Abh. Math. Sem. Univ. Hamburg 32 (1968), 191-206.
- [3] Simonov A.A. About correspondence between neardomains and groups. Algebra i Logic. vol. 45, 2, 2006.
- [4] Leissner W. On the Functional Equation $\phi(xy^{-1}) = \phi(\phi(x)\phi(y)^{-1})\phi(y^{-1})$ over a Group. Report of Meetings. Elfte internationale Tagung über Funktionalgleichungen in Oberwolfach vom 14. bis 20. Dezember 1973.
- [5] Maltsev A. I. Structural performance of some classes of algebras, Doklady of the Academy of Sciences of the USSR, 120, No. 1, 29-32, 1958.