Федеральное государственное бюджетное образовательное учреждение высшего образования «Горно-Алтайский государственный университет»

На правах рукописи

СИМОНОВ АНДРЕЙ АРТЕМОВИЧ

Ограниченно точно транзитивные группы и алгебраические системы, связанные с псевдоматричным умножением

01.01.06 – математическая логика, алгебра и теория чисел

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего образования «Горно-Алтайский государственный университет»

Научный руководитель: Бардаков Валерий Георгиевич

доктор физико-математических наук, доцент.

Официальные оппоненты: Крылов Петр Андреевич

доктор физико-математических наук, профессор. Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Национальный исследовательский Томский государственный университет», кафедра алгебры, заведующий кафедрой.

Сосновский Юрий Васильевич

кандидат физико-математических наук, доцент. Институт физико-математического и информационно-экономического образования, директор.

Ведущая организация: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский Федеральный Университет».

Защита состоится «25» ноября 2016 г. в 16⁰⁰ часов на заседании диссертационного совета Д 003.015.02 при Федеральном государственном бюджетном учреждении науки Институт математики им. С. Л. Соболева Сибирского отделения Российской академии наук, расположенном по адресу: пр. Академи-ка Коптюга 4, г. Новосибирск, 630090.

С диссертацией можно ознакомиться в библиотеке и на сайте Федерального государственного бюджетного учреждения науки Институт математики им. С. Л. Соболева Сибирского отделения Российской академии наук, http://math.nsc.ru.

Автореферат разослан «20» октября 2016 г.

Ученый секретарь диссертационного совета, $\kappa.\phi.$ -m.н., douenm

SH

Стукачев

Алексей Ильич

Общая характеристика работы

Актуальность темы исследования. Изучение транзитивных групп преобразований различных множеств является классическим разделом теории групп. Напомним, что группа G = G(M) преобразований множества M называется m ранзитивной, если для произвольных $x,y \in M$ существует $g \in G$ такой, что y = g(x). Группа называется n-транзитивной, если для произвольных кортежей $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in M^n$, из попарно неравных элементов, существует $g \in G$ такой, что $y_i = g(x_i)$ для $i = 1, 2, \ldots, n$ и точно n-транзитивной — если такой элемент $g \in G$ единственный.

К. Жордан [20] доказал, что если G конечная точно n-транзитивная группа при $n \geq 4$, то G является одной из следующих групп: симметрической S_n , S_{n+1} , знакопеременной A_{n+2} или группой Матьё M_{11} , M_{12} для n=4, 5 соответственно. Г. Цассенхауз [31] показал, что любую точно 2-транзитивную группу можно представить как группу аффинных преобразований: $x\mapsto xb+a,\,b\neq 0$ конечного почти-поля, а точно 3-транзитивную группу — как группу дробно-линейных преобразований конечного поля или почти-поля.

М. Холл [19] обобщил результат К. Жордана на бесконечные группы, доказав, при некоторых дополнительных условиях на группу, что точно 2-транзитивная группа является группой аффинных преобразований планарного почти-поля. Напомним, что почти-поле F называется *планарным*, если уравнение xa = xb + c при $a,b,c \in F,\ a \neq b$ имеет единственное решение в F. При этом Дж. Л. Земмер [32] показал, что некоторые точно 2-транзитивные группы возникают как группы аффинных преобразований непланарных почти-полей. Ж. Титс [29] изучал локально-компактные, связные группы, действующие на топологическом пространстве и доказал, что каждая такая точно 2-транзитивная группа изоморфна группе аффинных преобразований поля вещественных чисел \mathbb{R} , поля комплексных чисел \mathbb{C} или тела кватернионов \mathbb{H} . Такая группа, действующая точно 3-транзитивно изоморфна группе дробно-линейных преоб-

разований поля $\mathbb R$ или $\mathbb C$. В этой же работе $\mathbb K$. Титс показал, что если не требовать от группы локальной компактности и связности, то точно 2-транзитивная группа будет изоморфна группе преобразований некоторого псевдополя. Π севополем $\mathbb K$. Титс назвал алгебраическую систему $\langle B; +, \cdot \rangle$ для которой $\langle B; + \rangle$ — группоид, $\langle B \setminus \{0\}; \cdot \rangle$ — группа.

Г. Карзел [21] независимо от работ Ж. Титса определил *почти-область* как близкую к псевдополю алгебраическую систему и построил взаимно-однозначное соответствие между почти-областями и точно 2-транзитивными группами. Всякая почти-область является псевдополем, но не наоборот. Тем не менее, Ф.В. Вилк [30] показал, что любое псевдополе можно построить при помощи соответствующей почти-области. П. Кара, Р. Киебум, Т. Вервлоет [26] определив категорию почти-областей и категорию точно 2-транзитивных групп доказали их эквивалентность.

В. Д. Мазуров [9], используя теоретико-групповые методы показал, что если стабилизатор точно 2-транзитивной группы содержит инволюцию и про-изведение некоторых двух инволюций имеет бесконечный порядок, то в стабилизаторе точки содержится подгруппа, изоморфная \mathbb{Q}^* (мультипликативной группе поля рациональных чисел \mathbb{Q}), а точно 2-транзитивная группа содержит подгруппу изоморфную группе аффинных преобразований поля \mathbb{Q} . Также точно 2-транзитивные группы, используя теоретико-групповые методы, изучали А.И. Созутов, Е.Б. Дураков, Е.В. Бугаева [18].

Долгое время оставался открытым вопрос существования почти-области не являющейся почти-полем. Этот вопрос эквивалент следующему: всякая ли точно 2-транзитивная группа содержит абелеву нормальную подгруппу [5, вопрос 11.52]? Недавно был построен пример [27, 28] точно 2-транзитивной группы без абелевой нормальной подгруппы. Отсюда следует существование примера почти-области, не являющейся почти-полем.

Для построения бесконечной точно 3-транзитивной группы В. Керби [22] определил КТ-поле. KT-поле задаётся парой $(\mathcal{B}, \varepsilon)$, где \mathcal{B} — почти-область, а ε

— автоморфизм её мультипликативной группы. Для ε справедливо равенство $\varepsilon(1-\varepsilon(x))=1-\varepsilon(1-x),\ x\in B^*\setminus\{1\}$. Произвольная точно 3-транзитивная группа является группой преобразований некоторого КТ-поля.

П.М. Кон [4, лемма 7.5.1] определил алгебраическую систему $R = \langle G; \cdot, ^{-1}, \varphi, 1 \rangle$ при помощи, действующей на группе G унарной операции $\varphi: G^* \to G^*,$ $G^* = G \setminus \{1\}$ аксиомами:

- 1. $\varphi(yxy^{-1}) = y\varphi(x)y^{-1}, \ x \in G^*, \ y \in G;$
- 2. $\varphi(\varphi(x)) = x, x \in G^*$;
- 3. $\varphi(xy^{-1}) = \varphi\left(\varphi(x)\left(\varphi(y)\right)^{-1}\right)\varphi(y^{-1}), \ x, y \in G^*, \ x \neq y;$
- 4. элемент $b = \varphi(x^{-1})x (\varphi(x))^{-1}$ не зависит от выбора $x \in G^*$,

и показал, что по R можно построить единственное тело $\langle P;+,\cdot \rangle$. При этом получается, что G — мультипликативная группа тела $P,\, \varphi(x)=1-x,\, b=-1.$

В. Лейснер [24] показал, что если в определении R оставить только аксиомы 2–4, то получим почти-поле, если оставить только аксиомы 2 и 3, то получим почти-область. В дальнейшем В. Лейснер [25] расширил алгебраическую систему R, включив в её сигнатуру инволюции $\varepsilon_1, \ldots, \varepsilon_{n-2}$, порождающие симметрическую группу $S_{n-1} \subseteq Aut(G)$, причём $\langle \varphi, S_{n-1} \rangle = S_n$. Введённую алгебраическую систему он назвал *полем степени п*. С КТ-полем связано G-поле C-полем C-п

Г.Г. Михайличенко среди локальных групп Ли нашёл все $(n \cdot k)$ -параметрические локально точно n-транзитивные группы преобразований множества \mathbb{R}^k для k=1 [11] и k=2 [13, 14]. Все локальные группы при k=1, с точностью до локального изоморфизма, совпадали с глобальными точно n-транзитивными группами с n=1,2,3. Для n>3 других групп нет. Необходимо отметить, что в отличие от точно n-транзитивных групп, прямое произведение локально точно n-транзитивных групп будет локально точно n-транзитивным.

Эти решения были получены Г.Г. Михайличенко в рамках изучения «феноменологически-симметричных геометрий на двух множествах» (далее, для

простоты, ФСГ). Развиваемый подход долгое время работал с гладкими функциями над гладкими многообразиями. Первые шаги в изучении алгебраических систем, возникающих в ФСГ, были сделаны Е.Е. Витяевым [2] и В.К. Иониным [3]. Ими были получены алгебраические системы, связанные с ФСГ минимального ранга. Ю.И. Кулаковым [8] была высказана гипотеза об эквивалентном определении ФСГ произвольного ранга через ФСГ минимального ранга. При сопоставлении данной гипотезы и результатов В.К. Ионина [3] можно говорить о групповом умножении прямоугольных матриц [39], которое отличается от обычного матричного умножения — о псевдоматричном умножении.

Цели и задачи. Целью диссертационной работы является изучение псевдоматричной алгебраической системы и установление её связей с другими известными алгебраическими системами.

Исходя из поставленной цели, необходимо решить следующие задачи:

- 1. Построить категорную эквивалентность между точно n транзитивными группами и полями степени n, когда морфизмами категорий являются гомоморфизмы алгебраических систем. Расширить соответствующие алгебраические системы так, чтобы между ними по-прежнему оставалась категорная эквивалентность.
- 2. Построить псевдоматричную алгебраическую систему, расширяющую матричное умножение и найти примеры.
- 3. Доказать гипотезу вложимости ФСГ произвольного ранга в ФСГ минимального ранга. Построить категорную эквивалентность между алгебраической системой ФСГ и псевдоматричной алгебраической системой.

Научная новизна. Представленные в диссертации результаты являются новыми, получены автором самостоятельно или в неразделимом соавторстве с научным руководителем В. Г. Бардаковым (§ 2.1).

Теоретическая и практическая значимость. Диссертационная работа имеет теоретический характер. Результаты диссертационной работы могут быть использованы специалистами в области теории групп, теории алгебраических

систем, теоретической физики. Большая часть результатов может служить основой дальнейших исследований ограниченно точно транзитивных групп, псевдоматричного умножения и поиска новых решений ФСГ.

Методология и методы исследования. В работе использовались методы теории групп, алгебраических систем и теории категорий.

Положения, выносимые на защиту. На защиту выносятся следующие основные результаты диссертации:

- 1. Введён класс $\mathit{групn}$ о $\mathit{граниченно}$ точно $\mathit{n-mpah}$ зитивных и класс $\mathit{n-ncee-donone}$ их категорная эквивалентность для категорий, когда морфизмами категорий являются гомоморфизмы соответствующих алгебраических систем. Поля степени n являются частным случаем $\mathit{n-ncee}$ дополей, отсюда получается категорная эквивалентность точно $\mathit{n-tpah}$ зитивных rpynn и полей степени n [34, 36].
- 2. Построена псевдоматричная алгебраическая система, расширяющая матричное умножение. Построены примеры псевдоматричного умножения для квадратных и прямоугольных матриц. Установлено, что произвольная ограниченно точно *п*-транзитивная группа задаёт псевдоматричное умножение, равно как и произвольное псевдоматричное умножение задаёт ограниченно точно *п*-транзитивную группу [33, 35].
- 3. Установлена категорная эквивалентность алгебраических систем $\Phi C\Gamma$ и псевдоматричных алгебраических систем. Доказана гипотеза вложимости $\Phi C\Gamma$ произвольного ранга в $\Phi C\Gamma$ минимального ранга [33].

Степень достоверности и апробация результатов. Основные результаты диссертации докладывались на следующих семинарах:

«Алгебра и логика», «Теория групп», «Эварист Галуа», семинаре имени А.И. Ширшова (Институт математики им. С. Л. Соболева СО РАН и Новосибирского национального исследовательского государственного университета, г. Новосибирск). Научный семинар кафедры алгебры (Национальный исследовательский Томский государственный университет, г. Томск, 2013, 2016 гг.). «Тео-

рия физических структур» (Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Горно-Алтайский государственный университет, г. Горно-Алтайск).

Докладывались на конференциях:

- 1. «Mathematics of Distances and Applications», Varna, Bulgaria, 2012.
- 2. 9-ая Международная летняя школа «Пограничные вопросы теории моделей и универсальной алгебры», Эрлагол-2011, Республика Алтай, 2011.
- 3. Международная конференция «Мальцевские чтения» (ИМ им. С.Л. Соболева СО РАН, г. Новосибирск, 2000, 2002, 2005, 2007, 2009 гг.).
- 4. Всероссийская конференция «Знания Онтологии Теории», Новосибирск, 2007.

Публикации. Материалы диссертации опубликованы в 11 печатных работах. Из них пять статей в рецензируемых журналах [33–37], из которых четыре [33–36] входят в перечень ВАК.

Личный вклад автора. Содержание диссертации и основные положения, выносимые на защиту, отражают персональный вклад автора. Все представленные в диссертации результаты получены автором лично. Работа [35] выполнена совместно с научным руководителем В.Г. Бардаковым при равном участии обеих сторон.

Структура и объем диссертации. Диссертация состоит из оглавления, введения, трех глав (разбитых на параграфы), заключения и списка литературы. Полный объем диссертации составляет 92 страницы. Список литературы содержит 43 наименования. Все утверждения (леммы, предложения, теоремы, следствия) пронумерованы в порядке возрастания. Формулы занумерованы двумя числами: первое соответствует номеру главы, второе — порядковому номеру формулы в данной главе.

Краткое содержание работы.

Во введении обоснована актуальность диссертационной работы.

 ${f B}$ **первой главе** рассматриваются ограниченно точно n-транзитивные

группы и n-псевдополя, устанавливается их связь. Определим множество

$$F(M,n) = \{(m_1,\ldots,m_n) \in M^n | m_i \neq m_j \text{ при } i \neq j \}$$

и рассмотрим непустое подмножество $N \subseteq F(M, n)$. Введём новое понятие:

Определение 2. Группа G(M) называется N-ограниченно точно n-транзитивной, если для любых $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in N \subseteq F(M, n)$ существует единственный $g \in G$ такой, что $x_i \cdot g = y_i$ для $i = 1, \ldots, n$.

Если N = F(M,n), то G(M) - mочно n-транзитивная группа. Многие известные точно 2-транзитивные группы являются группами аффинных преобразований почти-полей. Рассмотрим правое почти-кольцо \mathbb{K} с единицей 1. Множество обратимых элементов $K^* \subset K$ образует группу $\langle K^*; \cdot, ^{-1}, 1 \rangle$. Определим подмножество $N \subseteq F(K,2)$: $N = \{(x,y) \in K^2 | x-y \in K^*\}$. Тогда справедлива

Теорема 1. Пусть \mathbb{K} — правое почти-кольцо с мультипликативной группой $\langle K^*;\cdot,^{-1},1\rangle$. Определим на N бинарную операцию:

$$(x_1, x_2) \circ (y_1, y_2) = (f(x_1, y_1, y_2), f(x_2, y_1, y_2)),$$

где функция $f: K \times N \to K$ определена равенством:

$$f(x, y_1, y_2) = x(y_1 - y_2) + y_2.$$

Тогда алгебраическая система $G = \langle N; \circ \rangle$ является группой, которая действует на \mathbb{K} и это действие является N-ограниченно точно 2-транзитивным. При этом группа G(K) изоморфна группе аффинных преобразований правого почти-кольца \mathbb{K} .

Для определения n-псевдополя рассмотрим группу $B_1 = \langle B_1; \bullet, ^{-1}, e_1 \rangle$ которая действует на множестве $A, A \cap B_1 = \emptyset$. Будем рассматривать правое действие группы B_1 на A. Действие элемента $b \in B_1$ на элемент $a \in A$ обозначим символом $a \cdot b \in A$. Продолжим это действие на множество $B = A \cup B_1$, по правилу:

$$c \cdot b = \begin{cases} c \cdot b, & \text{если } c \in A, \\ c \bullet b, & \text{если } c \in B_1. \end{cases}$$

Таким образом, операция «·» является частичной операцией на множестве B.

На множестве B действуют инволюции $\varphi_i: B \to B, i = 1, \ldots, n$, разбивающие множество B на непересекающиеся подмножества. Обозначим $A_i \subseteq A, B_i \subseteq B_1$ — инвариантные относительно φ_i подмножества, т. е. $A_i^{\varphi_i} \subseteq A_i, \ B_i^{\varphi_i} \subseteq B_i$. Дополнения соответствующих множеств: $\overline{A_i} = A \setminus A_i, \ \overline{B_i} = B_1 \setminus B_i$.

Определение 4. Алгебраическую систему $\mathbb{B}_n = \langle B; \cdot, ^{-1}, \varphi_2, \dots, \varphi_n, e_1 \rangle$ с частичной операцией «·» будем называть n-псевдополем если справедливы аксиомы:

- (A1) $\varphi_i(\varphi_i(x) \cdot \varphi_i(y)) = \varphi_i(x \cdot \varphi_i(y^{-1})) \cdot y, \ x \in B, \ y \in B_i, \ i = 2, \dots, n;$
- (A2) для произвольных $i \neq j \in \{2, \dots, n\}$ выполняется равенство $\varphi_i \varphi_j \varphi_i = \varphi_j \varphi_i \varphi_j;$
- (A3) для $\sigma_i = \varphi_2 \varphi_i \varphi_2$ справедливы равенства $\sigma_i(x \cdot y) = \sigma_i(x) \cdot \sigma_i(y)$, где $i=3,\ldots,n$ и $x \in B, y \in B_1$;
 - (A4) $\varphi_i \varphi_j(e_1) = \varphi_j(e_1) \text{ npu } i \neq j \in \{2, \dots, n\}.$

Символом $K\mathbb{B}_n$ обозначим класс n-псевдополей \mathbb{B}_n . Для построения групп ограниченно точно n-транзитивных в классе $K\mathbb{B}_2$ 2-псевдополей выделим под-класс $K\mathbb{B}_2^*$ для которых выполняется условие

(А5) Для произвольных $x \in \overline{B_2}$ и $y \in B_2$ справедливо $xy \in B_2$. Для 2-псевдополя $\mathbb{B}_2 \in K\mathbb{B}_2^*$ определим множество

$$N_2 = \{(x,y) \in B^2 | \varphi_2(x \cdot y^{-1}) \in B_1 \text{ или } \varphi_2(\varphi_2(x) \cdot E\varphi_2(y)) \in B_1 \}$$

и функцию $f_2: B \times N_2 \to B$:

$$f_2(x,y_1,y_2) = \begin{cases} \varphi_2(x\varphi_2(y_1y_2^{-1}))y_2, & \text{при } y_2 \in B_1, \\ \varphi_2(\varphi_2(\varphi_2(x)\varphi_2(\varphi_2(y_1)E\varphi_2(y_2)))\varphi_2(y_2)), & \text{при } y_2 \in \overline{A_2}. \end{cases}$$

Лемма 5. Алгебраическая система $\langle N; \circ \rangle$ с операцией:

$$[x_1, x_2] \circ [y_1, y_2] = [f_2(x_1, y_1, y_2), f_2(x_2, y_1, y_2)],$$

построенной при помощи функции f_2 определённой выше, является N_2 -ограниченно точно 2-транзитивной группой, действующей на $\mathbb{B}_2 \in K\mathbb{B}_2^*$.

Введём подкласс n-псевдополей $K\mathbb{B}_n^* \subseteq K\mathbb{B}_n$ такой, что для произвольного n-псевдополя $\langle B; \cdot, ^{-1}, \varphi_2, \dots, \varphi_n \rangle \in K\mathbb{B}_n^*$ соответствующее ему 2-псевдополе: $\langle B; \cdot, ^{-1}, \varphi_2 \rangle$ лежит в $K\mathbb{B}_2^*$.

Для n-псевдополя $\mathbb{B}_n \in K\mathbb{B}_n^*$ определим множество N_n и функцию $f_n: B \times N_n \to B$ индукцией по n. Множество N_2 и функция f_2 определены ранее для леммы 5. Пусть определено множество N_{n-1} для (n-1)-псевдополя. Тогда определим множество N_n :

$$N_{n} = \{(x_{1}, \dots, x_{n}) \in B^{n} | (\varphi_{n}(x_{1}x_{n}^{-1}), \dots, \varphi_{n}(x_{n-1}x_{n}^{-1})) \in N_{n-1}, x_{n} \in B_{1} \} \cup$$

$$\cup_{k=2}^{n} \{(x_{1}, \dots, x_{n}) \in B^{n} | (\varphi_{n}(\varphi_{k}(x_{1})E\varphi_{k}(x_{n})), \dots$$

$$\dots, \varphi_{n}(\varphi_{k}(x_{n-1})E\varphi_{k}(x_{n}))) \in N_{n-1}, x_{n} \in \overline{A_{k}} \}.$$

Пусть определена функция f_{n-1} для (n-1)-псевдополя. Тогда определим функцию f_n :

Теорема 3. Алгебраическая система $\langle G_n; \circ \rangle$, n = 3, ..., n с операцией, определённой равенством:

$$[x_1,\ldots,x_n]\circ[y_1,\ldots,y_n]=[f_n(x_1,y_1,\ldots,y_n),\ldots,f_n(x_n,y_1,\ldots,y_n)],$$

является N_n -ограниченно точно n-транзитивной группой, действующей на $\mathbb{B}_n \in K\mathbb{B}_n^*.$

Для построения n-псевдополя по N-ограниченно точно n-транзитивной группе $G_n(B)$ фиксируем произвольный $(e_1,\ldots,e_n)\in N\subseteq B^n$. По множеству N строим множество кортежей $\widetilde{G_n}=\{[g_1,\ldots,g_n]\big|(g_1,\ldots,g_n)\in N\}$. Определим соответствие $\psi:G_n\to\widetilde{G_n}$ по правилу $g\mapsto [g_1,\ldots,g_n],$ где $g_i=e_i\cdot g$. Определим на $\widetilde{G_n}$ произведение в виде:

$$[g_1, \ldots, g_n] \circ [h_1, \ldots, h_n] = [g_1 \cdot [h_1, \ldots, h_n], \ldots, g_n \cdot [h_1, \ldots, h_n]].$$

Лемма 6. Соответствие ψ задаёт изоморфизм групп $\langle G_n; \cdot \rangle$ и $\langle \widetilde{G}_n; \circ \rangle$. Для нейтрального элемента $\varepsilon \in G_n$ соответствующий $\psi(\varepsilon) = E = [e_1, \dots, e_n]$.

Для произвольного множества B рассмотрим его декартово произведение B^n и определим операции проектирования $\Pr_i: B^n \to B$ так, что если $(x_1,\ldots,x_n) \in B^n$, то $\Pr_i(x_1,\ldots,x_n) = x_i$. Для произвольного $X = (x_1,\ldots,x_n) \in B^n$ определим X_{ij} , который получается из X перестановкой i-й и j-й компонент.

Далее будем рассматривать N-ограниченно точно n-транзитивные группы с дополнительным условием:

(T1) если $X \in N$, то $X_{ij} \in N$ для всех $i \neq j \in \{1, ..., n\}$.

В классе KT_2 рассмотрим подкласс KT_2^* , состоящий из групп G_2 для которых выполнено условие:

(T2) для любых $(y_1,y_2)\in N$ и $x\in \Pr_1(N)$ справедливо, по крайней мере, одно из условий $(x,y_2)\in N$ или $(y_1,x)\in N$.

Лемма 7. Если группа $G_2(B) \in KT_2^*$, то на множестве B индуцировано 2-псевдополе $\langle B; \cdot, ^{-1}, \phi_2, e_1 \rangle \in K\mathbb{B}_2^*$, где $\phi_2(x) = x \cdot [e_2, e_1]$.

Определим класс $KT_n^*\subseteq KT_n$ состоящий из ограниченно точно n-транзитивных групп $G_n(B)$, стабилизаторы $St_{G_n(B)}(e_3,\ldots,\,e_n)=G_2(B)$ которых лежат в классе KT_2^* . Тогда, справедлива

Теорема 4. Если группа $G_n(B) \in KT_n^*$, то на множестве B можно определить n-псевдополе $\langle B; \cdot, ^{-1}, \phi_2, \dots, \phi_n, e_1 \rangle \in K\mathbb{B}_n^*$, где $\phi_i(x) = x \cdot E_{1i}$.

Теорема 5. Категории n-nceвдополей $C\mathbb{B}_n^*$ и ограниченно точно n-транзитивных групп $CT_n(B)^*$ эквивалентны.

Результаты первой главы опубликованы в работах [34, 36]

Во второй главе рассматривается псевдоматричное умножение. В § 2.1 строится пример псевдоматричного умножения.

Для определения псевдоматричного умножения рассмотрим прямоугольные матрицы $A, B \in M_{m,n}$ размера $m \times n$, где m — число строк, n — число столбцов матрицы с элементами из множества R. Псевдоматричным умножени-

ем двух матриц A и B является матрица C, построенная при помощи

$$f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$$
.

Элемент c_{ij} матрицы C есть функция f от n элементов i-ой строки матрицы A и m элементов j-го столбца матрицы B:

$$c_{ij} = f(a_{i1}, a_{i2}, \dots, a_{in}, b_{1j}, b_{2j}, \dots, b_{mj}).$$

Отображение $f:\Omega_R\times\Sigma_R\to R$ задаёт ncesdomampuчное умножение на множестве G. Трёхсортную алгебраическую систему $\langle\Omega_R,\Sigma_R,R;f\rangle$ будем называть ncesdomampuчной алгебраической системой, если выполнены аксиомы:

АМ1. Для произвольных матрицы $A \in G$ и столбца $C^j \in \Sigma_R$ существует единственный $B^j \in \Sigma_R$, для которого справедливо равенство $A \cdot_f B^j = C^j$;

АМ2. Для произвольных матрицы $B \in G$ и строки $C_i \in \Omega_R$ существует единственная строка $A_i \in \Omega_R$, для которой справедливо равенство $A_i \cdot_f B = C_i$;

АМ3. Умножение матриц ассоциативно. Иными словами, для произвольных $A, B, C \in G$ справедливо равенство $(A \cdot_f B) \cdot_f C = A \cdot_f (B \cdot_f C)$.

Теорема 9. Псевдоматричное умножение для матриц размера $m \times n$ можно записать при помощи псевдоматричного умножения матриц-столбиов с функцией f^m или псевдоматричного умножения матриц-строк с функцией f^n .

Результаты второй главы опубликованы в работах [33, 35].

В первом параграфе **третьей главы** даётся определение:

Трёхсортную алгебраическую систему $\langle M, N, B; f, g \rangle$ с операциями

$$f: M \times N \to B, \ g: B^{n+mn+m} \to B,$$

определенными на множествах $M \times N, B$ будем называть алгебраической системой $\Phi C\Gamma$ ранга (m,n), если на подмножествах $\Sigma_M \subseteq M^m, \ \Sigma_B \subseteq B^m, \ \Omega_N \subseteq N^n,$ $\Omega_B \subseteq B^n$ выполнены аксиомы:

АК1. Для любых $(i_1, \ldots, i_m) \in \Sigma_M$, $(b_1, \ldots, b_m) \in \Sigma_B$ найдётся единственный $\alpha \in N$, для которого справедливо равенство $f(i_j, \alpha) = b_j$, $j = 1, \ldots, m$;

АК2. Для любых $(\alpha_1, \dots, \alpha_n) \in \Omega_N$, $(b_1, \dots, b_n) \in \Omega_B$ найдётся единственный $i \in M$, для которого справедливо равенство $f(i, \alpha_j) = b_j$, $j = 1, \dots, n$;

АКЗ. Для любых $(i_0, i_1, \ldots, i_m) \in M \times \Sigma_M$, $(\alpha_0, \alpha_1, \ldots, \alpha_n) \in N \times \Omega_N$ справедливо равенство $f(i_0, \alpha_0) = g(f(i_0, \alpha_1), \ldots, f(i_m, \alpha_n))$. В последнем равенстве функция g от n+mn+m переменных рассматривается над элементами $f(i_j, \alpha_k) \in B$, построенными над всеми парами (i_j, α_k) , за исключением (i_0, α_0) .

Ю.И. Кулаков в [8] сформулировал гипотезу:

Гипотеза 1. Всякая алгебраическая система $\langle \mathbb{R}^n, \mathbb{R}^m, \mathbb{R}; f, g \rangle$ ранга (m, n) вложима в некоторую алгебраическую систему $\langle \mathbb{R}^{mn}, \mathbb{R}^{mn}, \mathbb{R}^{mn}; \widetilde{f}, \widetilde{g} \rangle$ ранга (1,1), но построенную над матрицами \mathbb{R}^{mn} .

Данная гипотеза доказана для произвольных множеств M, N, B:

Теорема 11. Алгебраическая система $\Phi C\Gamma \ \langle M,N,B;f,g \rangle \$ ранга (m,n) вложима в некоторую $\langle M^m,N^n,B^{mn};\widetilde{f},\widetilde{g} \rangle \$ ранга (1,1).

Теорема 12. Категории алгебраических систем $\Phi C\Gamma$ и псевдоматричных алгебраических систем эквивалентны.

Результаты третьей главы опубликованы в работе [33].

В Заключении приводятся основные результаты диссертации.

Список литературы завершает изложение работы.

Благодарность. Автор выражает искреннюю признательность своему учителю Юрию Ивановичу Кулакову за интересную и плодотворную тему, благодарность научному руководителю Валерию Георгиевичу Бардакову за помощь в работе и скрупулезность. Автор благодарит участников Горно-Алтайской школы ТФС во главе с Г.Г. Михайличенко, участников семинаров им. А.И. Ширшова, «Эварист Галуа» и «Теория групп» за полезные обсуждения и лично руководителей семинаров Л.А. Бокутя, В.Д. Мазурова за щедрые советы и стимулирование работы.

Список литературы

- 1. Артамонов, В. А. Общая алгебра. Т. 2 / В.А. Артамонов, В.Н. Салий, Л.А. Скорняков и др. М.: Наука Гл. ред. физ.-мат. лит., 1991-480 с.
- 2. Витяев, Е.Е. Числовое, алгебраическое и конструктивное представления одной физической структуры. / Е.Е. Витяев // Логико-математические основы проблемы МОЗ. Новосибирск, 1985. Вып. 107: Вычислительные системы. С. 40–51.
- 3. Ионин, В.К. Абстрактные группы как физические структуры. / В.К. Ионин // Системология и методологические проблемы информационно-логических систем. Новосибирск, 1990. Вып. 135: Вычислительные системы. С. 40–43.
- 4. Кон, П.М. Свободные кольца и их связи. / П.М. Кон Москва, Мир, 1975, 334–336 с.
- 5. Коуровская тетрадь. Издание 18-е дополненное, включающее Архив решённых задач. Новосибирск. 2014.
- 6. Кулаков, Ю.И. Об одном принципе, лежащем в основании классической физики. / Ю.И. Кулаков // ДАН СССР, 193 1970, 1, С. 72–75.
- 7. Кулаков, Ю.И. Математическая формулировка теории физических структур / Ю.И. Кулаков // Сиб. матем. журн. 1971. Т. 12, № 5 С. 1142–1145.
- Кулаков, Ю.И. Новая формулировка теории физических структур / Ю.И. Кулаков // Методологические и технологические проблемы информационно-логических систем, Вычислительные системы, № 125, 1988 – С. 3–32.
- 9. Мазуров, В.Д. О точно дважды транзитивных группах. / В.Д. Мазуров // Вопросы алгебры и логики. (Труды Института математики СО РАН, Т. 30). Новосибирск: Изд-во ИМ СО РАН, 1996 С. 114–118.
- 10. Маклейн, С. Категории для работающего математика / С. Маклейн М., Физматлит, $2004-352~{
 m c}.$
- 11. Михайличенко, Г.Г. Решение функциональных уравнений в теории физи-

- ческих структур / Г.Г. Михайличенко // ДАН СССР, 1972, т. 206, 5 С. 1056–1058.
- 12. Михайличенко Г.Г. Феноменологическая и групповая симметрии в геометрии двух множеств (теории физ. структур) / Г.Г. Михайличенко // ДАН СССР, 1985, т. 284, № 1, стр. 39–41.
- 13. Михайличенко, Г.Г. Двуметрические физические структуры и комплексные числа / Г.Г. Михайличенко // ДАН СССР, 321, 1991, 4 С. 677–680.
- 14. Михайличенко, Г.Г. Двуметрические физические структуры ранга (n+1,2) / Г.Г. Михайличенко // Сиб. матем. журн., 34:3, 1993 С. 132–143.
- 15. Михайличенко, Г.Г. Групповая симметрия физических структур / Г.Г. Михайличенко Барнаул: БГПУ, 2003 204 с.
- 16. Пирс, Р. Ассоциативные алгебры / Р. Пирс М.: Мир, 1986 543 с.
- 17. Плоткин, Б.И. Универсальная алгебра, алгебраическая логика и базы данных / Б.И. Плоткин – М.: Наука, 1991 – 448 с.
- 18. Созутов, А.И. О некоторых почти-областях и точно дважды транзитивных группах / А.И. Созутов, Е.Б. Дураков, Е.В. Бугаева // Тр. ИММ УрО РАН, 20, № 2, 2014 С. 277-283.
- Hall, M. On a theorem of Jordan / M. Hall // Pacific J. Math. 4:2, 1954 –
 P. 219–226.
- 20. Jordan, C. Recherches sur les substitutions / C. Jordan // J. Math. Pures Appl. (2) 17, 1872 P. 351–363.
- 21. Karzel, H. Inzidenzgruppen / H. Karzel // I. Lecture Notes by Pieper, I. and Sorensen, K., University of Hamburg (1965), 123–135.
- 22. Kerby, W. Uber eine scharf 3-fach transitiven Gruppen zugeordnete algebraische Struktur / W. Kerby, H. Wefelscheid // Abh. Math. Sem. Univ. Hamburg 37, 1972 P. 225–235.
- 23. Krantz, D.H. Foundations of measurement. V.1 / D.H. Krantz, R.D. Luce, P. Suppes, A. Tversky New York and London: Academic Press, 1971 576 p.
- 24. Leissner, W. Ein Stufenaufbau der Fasthereiche, Fastkorper und Korper aus

- ihrer multiplikativen Gruppe / W. Leissner // Abh. Math. Sem. Univ. Hamburg 46, 1977 P. 55–89.
- 25. Leissner, W. On sharply n-ply transitive groups / W. Leissner // The Eighteenth International Symposium on Functional Equations, August 26-September 6, 1980, Waterloo and Scarborough, Ontario, Canada.
- 26. Cara, P A categorical approach to loops, neardomains and nearfields / P. Cara, R. Kieboom, T. Vervloet // Bulletin of the Belgian Mathematical Society Simon Stevin, V. 19, № 5, 2012 P. 845–857.
- 27. Rips, E. A sharply 2-transitive group without a non-trivial abelian normal subgroup / E. Rips, Y. Segev, K. Tent // arXiv:1406.0382v3, 2014 P. 14.
- 28. Tent, K. Sharply 2-transitive groups / K. Tent, M. Ziegler // Adv. Geom., 16, no. 1, 2016 P. 131–134.
- 29. Tits, J. Sur les groupes doublement transitif continus / J. Tits // Comment. Math, Helv. 26, 1952 P. 203–224.
 - Sur les groupes doublement transitif continus: correction et complements, Comment. Math, Helv. 30, 1956 – P. 234–240.
- 30. Wilke, F.W. Pseudo-fields and doubly transitive groups / F.W. Wilke // Bull. Austral. math. soc. V. 7, 1972 P. 163–168.
- 31. Zassenhaus, H. Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen / H. Zassenhaus // Abh. Math. Sem. Univ. Hamburg, 11, 1936 P. 17–40
- 32. Zemmer, J.L. Near-fields, planar and non-planar / J.L. Zemmer // Math. Stud., 31, 1964 P. 145–150.

Работы автора по теме диссертации

- 33. Симонов, А.А. Псевдоматричные группы и физические структуры / А.А. Симонов // Сиб. матем. журн., 56:1, 2015 С. 211–226.
- 34. Симонов, А.А. Обобщение точно транзитивных групп / А.А. Симонов // Изв. РАН. Сер. матем., $78:6,\ 2014$ С. 153–178.
- 35. Бардаков, В.Г. Кольца и группы матриц с нестандартным произведением
 / В.Г. Бардаков, А.А. Симонов // Сиб. Матем. журнал, 2013, т. 54, №3 –
 С. 504–519.
- 36. Симонов, А.А. О соответствии между почтиобластями и группами / А.А. Симонов // Алгебра и Логика. 2006, 45, 2 С. 239–251
- 37. Simonov, A.A. On an algebraic definition of laws / A.A. Simonov, Y.I. Kulakov, E.E. Vityaev // Journal of Mathematical Psychology, 58, 2014 P. 13–20.
- 38. Simonov, A.A. The generalization of matrix multiplication / A.A. Simonov // MDA 2012 «Mathematics of Distances and Applications», 02-05.07.2012, Varna, Bulgaria, Abstracts P. 52.
- 39. Симонов, А.А. Физические законы и обобщение матричного умножения / А.А. Симонов // Всероссийская конференция Знания Онтологии Теории, 14–16 сентября 2007 г., Новосибирск, Т. 1 С. 104–113.
- 40. Симонов, А.А. Алгебраическая теория биформ. Случай ранга (n+1,2) / А.А. Симонов, И.А. Фирдман Препринт № ВМ07-02, Омского государственного технического университета, 2007 35 с.
- 41. Симонов, А.А. О группах близких к точно транзитивным / А.А. Симонов // Тезисы Мальцевские чтения, 2007, Новосибирск.
- 42. Симонов, А.А. Построение групп Матье M_{11} и M_{12} / А.А. Симонов // Тезисы Мальцевские чтения, 2005, Новосибирск.
- 43. Симонов, А.А. Обобщённое матричное умножение / А.А. Симонов // Тезисы Мальцевские чтения, 2002, Новосибирск.

Научное издание

СИМОНОВ АНДРЕЙ АРТЕМОВИЧ

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук на тему: Ограниченно точно транзитивные группы и алгебраические системы, связанные с псевдоматричным умножением

Подписано в печать 23.09.2016. Формат 60×90 1/16. Тираж 100 экз. Заказ 16.