On right neardomain

Andrey A. Simonov, Novosibirsk

In [1] for exposition of sharply 2-transitive groups the concept neardomain is introduced as algebraic system with two binary operations $\left(B_{1}, 0, \cdot,+, r\right)$. Until recently it is not known any example of a neardomain which is not a nearfield. In the given work it is offered to loosen neardomain axioms, having left only necessary ones for construction of sharply 2 -transitive groups. Let's define the right neardomain as algebraic system $\left(B_{1}, 0, v, \cdot,+,-, h, r\right)$ with operations:
$(+): B \times B_{1} \rightarrow B,(-): B \times B_{1} \rightarrow B,(\cdot): B \times B_{1} \rightarrow B$, where $B=B_{1} \cup\{1\}$ and

$$
v: B_{1} \rightarrow B_{1}, h: B_{1} \times B_{1} \rightarrow B_{1}, r: B_{1} \times B_{1} \rightarrow B_{1},
$$

for which axioms are fulfilled
A1. $(\forall x \in B)\left(\forall y \in B_{1}\right)(x-y)+y=x$;
A2. $(\forall x \in B)\left(\forall y \in B_{1}\right)(x+y)-y=x$;
A3. $\left(\forall x \in B_{1}\right) \quad x-x=0$;
A4. $\left(B_{1}, \cdot, e\right)$ is a group with a unit element $e \in B_{1}$;
A5. $(\forall x \in B)\left(\forall y, z \in B_{1}\right)\left(\exists h(y, z) \in B_{1}\right)(x+y) z=x h(y, z)+y z$;
A6. $(\forall x \in B)\left(\forall y, z \in B_{1}: y+z \neq 0\right)\left(\exists r(y, z) \in B_{1}\right)(x+y)+z=x r(y, z)+$ $(y+z)$;
A7. $(\forall x \in B)\left(\forall z \in B_{1}\right)\left(\exists v(z) \in B_{1}\right)(x+(0-z))+z=x v(z)$.
Let's define a map $L(x)=0-x$, then from A1 follows $L(x)+x=0$. Thus $\operatorname{map} L: B_{1} \rightarrow B_{1}$ defines left inverse in the right loop.

Lemma. In the right neardomain the following properties hold:

1. $\left(\forall x \in B_{1}\right) 0 x=0$;
2. $h(x, y)=E L(x) L(x y)$, where $E(x)=x^{-1}$;
3. $r(y, z)=(L(z)-y)^{-1} L(y+z)$;
4. $x-z=x v^{-1}(z)+L(z)$;
5. $v(z)=E L^{2}(z) z$, where $E L$ - superposition of transformations L and E.

The group $T_{2}(B)$ of transformations of a set B is called sharply 2 -transitive group, if for arbitrary pairs $\left(x_{1}, x_{2}\right) \neq\left(y_{1}, y_{2}\right) \in \widehat{B^{2}}$, where $\widehat{B^{2}}=B^{2} \backslash\{(x, x) \mid x \in$ $B\}$ there exists an unique element $g \in T_{2}(B)$ for which the equalities $g\left(x_{1}\right)=y_{1}$ and $g\left(x_{2}\right)=y_{2}$ are hold.

Theorem. Algebraic systems $\left(B_{1}, 0, \varphi, \cdot\right)$ and sharply 2 -transitive groups $T_{2}(B)$ are rational equivalent.

The concept rational equivalence is introduced by Maltsev A. I. [2].
Let's consider some examples of the right neardomains constructed over a skew field \mathbf{K} :

1. $x \oplus y=-x a^{-1}+y, x \ominus y=-x a+a y, r(y, z)=-a^{-1}, v(z)=a^{-2}, h(y, z)=z$.
2. $x \oplus y=x y^{2}+y, x \ominus y=x y^{-2}-y^{-1}, r(y, z)=y^{2} z(z+y)^{-1}(y z+1), h(y, z)=$ z^{-1}.

References

[1] Karzel H. Inzidenzgruppen I. Lecture Notes by Pieper, I. and Sorensen, K., University of Hamburg (1965), 123-135.
[2] Maltsev A. I. Structural performance of some classes of algebras, Doklady of the Academy of Sciences of the USSR, 120, No. 1, 29-32, 1958.

