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Examples of physical structures

1. Euclidean plane,
2. Ohm's Law.
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Examples of physical structures

1. Euclidean plane,
2. Ohm's Law.

The axioms of physical structures

1. The algebraic system of axioms,
3. Group identification of physical structures.

v

Solutions of physical structures

1. The physical structure of the two sets:
a) The physical structure of rank (2,2),
6) The physical structure of rank (3,2),
8) The physical structure of rank (n, m).
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Examples Euclidean plane

Ohm’s Law

What is a physical law? On the one hand, it is a restriction? On the other side,
on the basis of available data, the law allows us to make a prediction.

But what to consider under relations and what is (characterizes) a stable type?
In 1960s Kulakov suggested the mathematical interpretation of the law
concepts. Then several results, concerning the existence and the possible forms
of the relations, were achieved.
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Examples Euclidean plane

Ohm’s Law

To characterize the problem, let's turn to some examples. In particular, we are
going to have a look at the geometry field. Can we say that all the points are
somehow linked with each other? If yes, then how exactly these links are
established? By inspecting the distances between the points, we can make a
conclusion that the points are located on the same line, space etc. Let's
consider the finite set of 9t = {i1,42,...,in}, consisting of n randomly located
points belonging to the Euclidean plane. Can we say that even with the
locations being absolutely random, for every point of 90t there exists a
well-defined law? In order to find it, we consider all possible pairs of points of
the set M. The amount of such pairs is @
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Examples Euclidean plane

Ohm’s Law

Euclidean plane

Matching the distance £ = \/(z; — xx)2 + (y; — yx)? to the each pair of
points i, k € 9, we get a set of data, obtained from the experiment, which
gives a complete characterization of the set 9t. We can present this data in a
form of the following matrix:

‘ 11 12 ig e in
i1 0 412 £13 e Eln
12 l12 0 la3 - lon
iz | £z 2z 0 ... s
in Eln £2n éSn e 0
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Examples Euclidean plane

Ohm’s Law

The volume of the simplex

So, for every four points i, k, m,n € M of Euclidean plane M1 there exists a
functional dependence between their relative positions, which doesn’t depend
on the points choice:

1 1 1 1
0 2 . |=o
E?m éim O KEVLTL
o Ly Ll O

_ == = O

This determinant is equal (up to a factor) to the square of the
three-dimensional simplex, constructed on points i, k,m,n € M.
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Examples Euclidean plane

Ohm’s Law

The volume of the simplex

If we have zero three-dimensional volume, then all the points are on the same
plane.
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Examples Euclidean plane

Ohm’s Law

Cayley-Menger Determinant

To expand the previous example, we can take two sets of points 4, j, k,m € M
and «, 8,7, € M of Euclidean plane M and consider the relative distances
between the sets of points with Greek and Latin indexes. For these random sets
there exists a functional dependence between their relative distances, which is
expressed by the Caly-Manger determinant being zero:

0 1 1 1 1

1 Zzza K?B Z?’y 6225
2 2 2 2 _
L G Ly £, G5 |=0.
1 gia ekﬂ éi’y ek(s
1 é?noz ggn[:? éi’y 6377,5
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Examples Euclidean plane

Ohm’s Law

Let’s consider the objects of the different kind (contradicting the geometry,
where all objects belong to the same set). In this case, two points from two
different sets ¢ € M, a € N are matched by the result Jio of the measurement
procedure, which serves as an analogue of distance. Consider the set of
conductors 9 and the set of current source M. For optional i, k, m € 9 and
a, B € 91 measure by ammeter the electric current in the following chain:
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Examples Euclidean plane

Ohm’s Law

In this case the ammeter output data J;. is a distance between the conductor
i and the current source . Consider three independent conductors i, k,m € M
and two optional current sources «, 8 € M. Measure the six ammeter outputs
J. With the sufficient preciseness, we have:

RV A A
jk_al jk_Bl =0,
1 Tma T

by these, using the standard points k,m € 9, 8 € 91 we have the well-known

Ohm’s law for the whole chain
Ea
TS R

where &, is an electromotive force, r,, is an inner resistance of the current
source o and R; is a resistance of the current 3.
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The algebraic system of axioms

The axioms of physical structures Group identification of physical structures

In these examples, there are two functions — f and ®. On the one hand the
function

fMxN—>R
is an analog of measurement procedure, which assigns to the two elements
i € M and o € M of these sets the value fio of B.

Andrey A. Simonov The generalization of matrix multipli



. . The algebraic system of axioms
The axioms of physical structures & -

Group identification of physical structures

In these examples, there are two functions — f and ®. On the one hand the

function
fMxN—>R

is an analog of measurement procedure, which assigns to the two elements
i € M and o € M of these sets the value fio of B.
On the other hand, there is a nontrivial function

o :R" — 0,

Function ® characterizes the relation of values f;o, when one of them is
calculated upon all others. Next, try to ignore the physical interpretation and
consider this as a mathematical problem.
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The axioms of physical structures Ui alfalinis eyEem o crifms

Group identification of physical structures

We consider a generalization, and instead of the set of real numbers R,
consider an arbitrary set. As a function of ®, consider the function

g:B™ ' 5 B,

which is the distance across all the restsuch.
Note that the functions f and g are partial, that is, not defined everywhere, but
on a subset.
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The axioms of physical structures i aflelivefs Syeiam & ceifrms

Group identification of physical structures

Under the physical structure of rank (m + 1,7 4+ 1) we mean a many-sorted,
partial algebraic system (9,0, B; f, g), on the sets M, 9, B acting on them
with the operations f, g with axioms.
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The axioms of physical structures i aflelivefs Syeiam & ceifrms

Group identification of physical structures

Under the physical structure of rank (m + 1,7 4+ 1) we mean a many-sorted,
partial algebraic system (9,0, B; f, g), on the sets M, 9, B acting on them
with the operations f, g with axioms.

Al. For maps f: M x N — B, g: B™T™" ™ s B, on arbitrary tuples

(i1 ...in) €M and (aoai...am) € N™T! the identity

flio,a1) -+ f(io,am)
f(ilaa()) f(ilval) f(iham)
fio,0) =g : : . : ;
f(in,ao) f(iwual) f(in»am)
is correct.

The function g is considered above the elements f(im, @) € B, constructed
above all pairs (im, an), excluding (io, o).
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The axioms of physical structures Ui alfalinis eyEem o crifms

Group identification of physical structures

All. For all tuples (iriz...in) € M™ and (biba...bn) € B™ there exists only
one element oo € M, for which the following equalities

flig, ) =bx, k€{1,2,...,n}

are true.
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The axioms of physical structures Ui alfalinis eyEem o crifms

Group identification of physical structures

All. For all tuples (iriz...in) € M™ and (biba...bn) € B™ there exists only
one element oo € M, for which the following equalities

flig, ) =bx, k€{1,2,...,n}

are true.
Alll. For all tuples (a1cz...m) € N™ and (biba...bn) € B™ there exists
only one element i € 9 for which the following equalities

G o) = bk, ke {1,2,...,m}

are true.
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The axioms of physical structures i aflelivefs Syeiam & ceifrms

Group identification of physical structures

In determining the algebraic system their equivalence is naturally defined.
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The axioms of physical structures i aflelivefs Syeiam & ceifrms

Group identification of physical structures

In determining the algebraic system their equivalence is naturally defined.
Definition For two many-sorted partial algebras (9, M, B; f, g) and
(M, N, B’; f',g") mapping triples A : 9t — 9 x N — N, v : B — B’
define their homomorphism, when the diagrams

mxm L B B % B
(A xx) 4 U vt N
mwxn LB (B % B

are commutative.
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The axioms of physical structures Ui alfalinis eyEem o crifms

Group identification of physical structures

In determining the algebraic system their equivalence is naturally defined.
Definition For two many-sorted partial algebras (9, M, B; f, g) and
(M, N, B’; f',g") mapping triples A : 9t — 9 x N — N, v : B — B’
define their homomorphism, when the diagrams

3

mxm L B B® % B
(Axx) ) LY, vl Ly
mwxn LB (B % B

are commutative.
Definition I/f homomorphisms X, x, 1 are bijective, then algebras
(M, M, B; f,9), O, 0N, B’; f',g') are isomorphic or equivalent.
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. . The algebraic system of axioms
The axioms of physical structures & »

Group identification of physical structures

The concept of the physical structure can be defined in an equivalent group
form, if together with a map f : 9t x 9 — B we also consider two groups of
transformations

Xai,...,amn * m - m? 0a1a~~~aa7nn U m7

depending on the parameters mn — a1, ..., amn € B.
We assume that this dependence on the parameters is significant, ie it can't be
eliminated by any replacement of parameters.
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. . The algebraic system of axioms
The axioms of physical structures & »

Group identification of physical structures

The concept of the physical structure can be defined in an equivalent group
form, if together with a map f : 9t x 9 — B we also consider two groups of
transformations

Xai,...,amn * m - m? 0a1a~~~aa7nn U m7

depending on the parameters mn — a1, ..., amn € B.

We assume that this dependence on the parameters is significant, ie it can't be
eliminated by any replacement of parameters.

The map f defines the physical structure of rank (m + 1,n + 1), if it is in
harmony with the groups of transformations xa,,...,am. and 6a,... for
which

mn »Amn )

(@ y) = f(Xar,amn (@), 0ar,....amn (V)
is fulfilled. (Mikchailichenko G.G., 1983)

Andrey A. Simonov The generalization of matrix multiplication



The physical structure of rank (2
The physical structure of rank (
The physical structures of the two sets ulie physfml structure of ran
The physical structure of rank (n, m)

The physical structure of rank (2,2)

The solution of the physical structure of rank (2,2) over the set R can be
written in the additive f(i,a) = x; + €4 or in the multiplicative form of
fli,a) = x; - €4, for which the corresponding functions ® can be written as

0 1 1
(f(i,a), f(i,8), f(G,0), f(G,8) = | 1 [f(i,)  f(i,B8) | =0,
L fG,e) f0,P)

~
—~
\‘N
Q2
==
[
—~ =
\.S.
=™
NN
I
=}

®(f(i ), f(i,8), f(4, ), f(4,8)) = f(fva

(Kulakov Y.I., 1968)

The generalization of matrix multiplication

Andrey A. Simonov



The physical structure of rank (2, 2
The physical structure of rank (

The physical structures of the two sets The ph\:/sical ETOEO 60 o

The physical structure of rank (2,2)

The solution of the physical structure of rank (2,2) exists for any arbitrary
group (B;-, !, e). The function f can be written as f(i, &) = z; - £4, and the
function g in the form of

f(i,Oé) = g(f(zaﬁ)vf(]a a)7f(.j7 B)) = f(%ﬂ) : f(]7 5)71 : f(]7 Oé).
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The physical structure of rank (2,2)

The solution of the physical structure of rank (2,2) exists for any arbitrary
group (B;-, !, e). The function f can be written as f(i, &) = z; - £4, and the
function g in the form of

f(i,Oé) = g(f(zaﬁ)vf(]a a)7f(.j7 B)) = f(%ﬂ) : f(]7 5)71 : f(]7 Oé).

A group (B;-, "' e) is called an algebraic system on the set B with one binary
operation (-) : B x B — B, with one unary operation (') : B — B, called
inverse and one nullary operation e, for which the following axioms are true:
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The physical structure of rank (2,2)

The solution of the physical structure of rank (2,2) exists for any arbitrary
group (B;-, !, e). The function f can be written as f(i, &) = z; - £4, and the
function g in the form of

f(i,Oé) = g(f(zaﬁ)vf(]a a)7f(.j7 B)) = f(%ﬂ) : f(]7 5)71 : f(]7 Oé).

A group (B;-, "' e) is called an algebraic system on the set B with one binary
operation (-) : B x B — B, with one unary operation (') : B — B, called
inverse and one nullary operation e, for which the following axioms are true:

l.z-(y-2)=(x-y) zforall z,y,2z € B,
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The physical structure of rank (2,2)

The solution of the physical structure of rank (2,2) exists for any arbitrary
group (B;-, !, e). The function f can be written as f(i, &) = z; - £4, and the
function g in the form of

f(i,Oé) = g(f(zaﬁ)vf(]a a)7f(.j7 B)) = f(%ﬂ) : f(]7 5)71 : f(]7 Oé).

A group (B;-, "' e) is called an algebraic system on the set B with one binary
operation (-) : B x B — B, with one unary operation (') : B — B, called
inverse and one nullary operation e, for which the following axioms are true:

l.z-(y-2)=(x-y) zforall z,y,2z € B,
2. Nullary operation selects the neutral element e € B of the group e and
r-e=e-x=x for every x € B.
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The physical structure of rank (2,2)

The solution of the physical structure of rank (2,2) exists for any arbitrary
group (B;-, !, e). The function f can be written as f(i, &) = z; - £4, and the
function g in the form of

f(i,Oé) = g(f(zaﬁ)vf(]a a)7f(.j7 B)) = f(%ﬂ) : f(]7 5)71 : f(]7 Oé).

A group (B;-, "' e) is called an algebraic system on the set B with one binary
operation (-) : B x B — B, with one unary operation (') : B — B, called
inverse and one nullary operation e, for which the following axioms are true:

l.z-(y-2)=(x-y) zforall z,y,2z € B,

2. Nullary operation selects the neutral element e € B of the group e and
r-e=e-x=x for every x € B.

3. Unary operation (7!) : B — B assigns to every element & € B an inverse

onez 'eBandz -z =zt x=cis true.
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The physical structure of rank

The physical structure of rank (3, 2)
The physical structures of the two sets The phy .(‘]I structure of rank ( /

The physical structure of rank (n, m)

The physical structure of rank (2,2)

The class of physical structures of rank (2,2) is equivalent to the class of all

groups (B;-, 7', e). (lonin V.K., 1990)
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The physical structure of rank

The physical structure of rank (3, 2)
The physical structures of the two sets The phy .(‘]I structure of rank ( /

The physical structure of rank (n, m)

The physical structure of rank (2,2)

The class of physical structures of rank (2,2) is equivalent to the class of all
groups (B;-, 7', e). (lonin V.K., 1990)

Over the set B =R we can construct only one locally nonisomorphic group —
R, so that f(z,y) =z - y.
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The physical structure of rank (2,2)

The class of physical structures of rank (2, 2) is equivalent to the class of all
groups (B;-, 7', e). (lonin V.K., 1990)

Over the set B =R we can construct only one locally nonisomorphic group —
R, so that f(z,y) =z - y.

There are two locally not isomorphic groups over the set B = R? and they are
built with the help of a direct product:

G1 = Rg x R, so that fl(m17:c27y1,y2) = (Il cY1, T2 - yg).

and the semidirect product

G2 = R X Ry, so that f2($1,$27y1,y2) = (172 ‘Y1 +T1,T2 - yz).
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The physical structure of rank

The physical structure of rank (3, 2)
The physical structures of the two sets The phy .(‘]I structure of rank ( /

The physical structure of rank (n, m)

The physical structure of rank (2,2)

Over the set B = R® seven locally - inequivalent physical structures of rank
(2,2) can be built (Mikchailichenko G.G., 1996). These solutions correspond to

the following locally nonisomorphic groups:
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The physical structure of rank (2, 2)
The physical structure of rank (3,2
The physical structure of rank ( 5

The physical structures of the two sets The physical structure of rank (n, m)

The physical structure of rank (2,2)

Over the set B = R® seven locally - inequivalent physical structures of rank
(2,2) can be built (Mikchailichenko G.G., 1996). These solutions correspond to
the following locally nonisomorphic groups:

G1=Ro xRo xRo fi(z,y) = (x1-y1,%2 - Y2, 23 - Y3);
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structure of rank
structure of rank

The physical structures of the two sets The physical structure of rank

The physical structure of rank (2,2)

Over the set B = R® seven locally - inequivalent physical structures of rank
(2,2) can be built (Mikchailichenko G.G., 1996). These solutions correspond to
the following locally nonisomorphic groups:

G1=Ro xRo xRo fi(z,y) = (x1-y1,%2 - Y2, 23 - Y3);
Gz =(RXxR)NRo fax,y) = (w1 + y1 + T2ys, T2 + Y2, T3y3);
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The physical structure of rank (2,2)

Over the set B = R® seven locally - inequivalent physical structures of rank
(2,2) can be built (Mikchailichenko G.G., 1996). These solutions correspond to
the following locally nonisomorphic groups:

G1=Ro xRo xRo fi(z,y) = (x1-y1,%2 - Y2, 23 - Y3);
Gz =(RXxR)NRo fow,y) = (w1 + y1 + T2ys, T2 + Y2, T3Y3);
Gs=RxR)XNRo f3(x,y) = (x3y1 + 21, 23(y2 — y1 In|x3|) + 2, z3y3);
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The physical structure of rank ('2‘ 2)

The physical structures of the two sets The physical structure of rank

The physical structure of rank (2,2)

Over the set B = R® seven locally - inequivalent physical structures of rank
(2,2) can be built (Mikchailichenko G.G., 1996). These solutions correspond to
the following locally nonisomorphic groups:

T1-Y1,T2 - Y2,x3 - ys)

1+ Y1 + z2ys, T2 + Y2, T3Y3);

z3y1 + x1, z3(y2 — y1 In|x3]) + 2, T3y3);
x3y1 + x1, Thy2 + T2, T3Y3);

—

G1=R0XR0XR0 fl(x,y):
G2 = (RXR)XRO fz(az,y) =
Gs = (RXR)XRO fg(a:,y) =
G4: (RXR)XRO f4($,y) =

P—
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The physical structure of rank (

The physical structure of rank (2,2)

Over the set B = R® seven locally - inequivalent physical structures of rank
(2,2) can be built (Mikchailichenko G.G., 1996). These solutions correspond to
the following locally nonisomorphic groups:

G1=R0XR0XR0 fl(x,y):

G2 = (RXR)XRO fz(x,y) =
= (RXR)XRO fg(a:,y) =

G4: (RXR)XRO f4($,y) =
=R xR) X

| ((z1cos(ys) — xz2sin(ys)) exp (vy5) + 11 .
fslw,y) = { (w1 8in(ys) + z2 cos(ys)) exp (Yys) + Y2, T3 +y3)

—

T1-Y1,T2 - Y2,x3 - ys)

1+ Y1 + z2ys, T2 + Y2, T3Y3);

z3y1 + x1, z3(y2 — y1 In|x3]) + 2, T3y3);
x3y1 + x1, Thy2 + T2, T3Y3);

—~
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The physical structures of the two sets The physical structure of rank (

The physical structure of rank (2,2)

Over the set B = R® seven locally - inequivalent physical structures of rank
(2,2) can be built (Mikchailichenko G.G., 1996). These solutions correspond to
the following locally nonisomorphic groups:

G1=R0XR0XR0 fl(x,y):

G2 = (RXR)XRO fz(x,y) =

G3 = (RXR)XRO fg(a:,y) =

G4: (RXR)XRO f4($,y) =
( )X

—

T1-Y1,T2 - Y2,x3 - ys)

1+ Y1 + z2ys, T2 + Y2, T3Y3);

z3y1 + x1, z3(y2 — y1 In|x3]) + 2, T3y3);
x3y1 + x1, Thy2 + T2, T3Y3);

—~

G5: R x R

| ((z1cos(ys) — xz2sin(ys)) exp (vy5) + 11
fs(,y) = { (z18in(ys) + @2 cos(ys)) exp (Yys) + y2, ¥3 + ys3)

’

G ~ SO(3),
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The physical structures of the two sets The physical structure of rank (

The physical structure of rank (2,2)

Over the set B = R® seven locally - inequivalent physical structures of rank
(2,2) can be built (Mikchailichenko G.G., 1996). These solutions correspond to
the following locally nonisomorphic groups:

G1=R0XR0XR0 fl(x,y):

G2 = (RXR)XRO fz(x,y) =

G3 = (RXR)XRO fg(a:,y) =

G4: (RXR)XRO f4($,y) =
( )X

—

T1-Y1,T2 - Y2,x3 - ys)

1+ Y1 + z2ys, T2 + Y2, T3Y3);

z3y1 + x1, z3(y2 — y1 In|x3]) + 2, T3y3);
x3y1 + x1, Thy2 + T2, T3Y3);

—~

G5: R x R

| ((x1cos(ys) — xz2sin(ys)) exp (vy3) + v1 .
$oes0) = e oo o s )
Ge = SO(3),

G7 ~ SL(Q,R).
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The physical structures of the two sets The physical structure of rank (

The physical structure of rank (2,2)

Over the set B = R® seven locally - inequivalent physical structures of rank
(2,2) can be built (Mikchailichenko G.G., 1996). These solutions correspond to
the following locally nonisomorphic groups:

G1=R0XR0XR0 fl(x,y):

G2 = (RXR)XRO fz(x,y) =

G3 = (RXR)XRO fg(a:,y) =

G4: (RXR)XRO f4($,y) =
( )X

—

T1-Y1,T2 - Y2,x3 - ys)

1+ Y1 + z2ys, T2 + Y2, T3Y3);

z3y1 + x1, z3(y2 — y1 In|x3]) + 2, T3y3);
x3y1 + x1, Thy2 + T2, T3Y3);

—~

Gs=(RxR
Fo(m,y) = { ((z1 cos(ys) — z2sin(ys)) exp (vys) + 1 ,
’ (z1sin(ys) + z2 cos(y3)) exp (yy3) + y2, 23 + y3) ’
Gs = SO(3),
Gr ~ SL(2,R).
Over the set B = R* one can build 11 locally inequivalent physical structures
of rank (2,2) (Kirov V.A., 2008).
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structure of rank
structure of rank (3, 2)

The physical structures of the two sets The physical structure of rank (n, m)

If the physical structure of rank (2,2) can be constructed over an algebra with
one binary operation by the group then for building the physical structure of
rank (3,2) it requires a richer algebra. Mikchailichenko G.G. showed (1968),
that the physical structure of rank (3,2) over R with the function

f(zv Oé) = xifa + Na,

can be constructed. Similar solutions can be constructed over an arbitrary field,
and even over weaker algebras, such as skew field, Nearfield, Neardomain and a
Right neardomain.
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If the physical structure of rank (2,2) can be constructed over an algebra with
one binary operation by the group then for building the physical structure of
rank (3,2) it requires a richer algebra. Mikchailichenko G.G. showed (1968),
that the physical structure of rank (3,2) over R with the function

f(zv Oé) = xifa + Na,

can be constructed. Similar solutions can be constructed over an arbitrary field,
and even over weaker algebras, such as skew field, Nearfield, Neardomain and a
Right neardomain.

F is the field (F;-,+,7",—,1,0), with the axioms:
Al. (F;+4,—,0) is an Abelian group with neutral element 0 € F,

A2. (F*;-, 7' 1) is an Abelian group with neutral element 1 € F'*, where
F* = F\ {0},

A3. Is a right-sided distributivity (z + y)z = z2 + yz,

A4. Is a left-sided distributivity z(y + z) = 2y + zz, z,y,z € F.
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From the Fields to the Right neardomain

Let’s define a skew field through the field. In the transition from the field to the
skew field in multiplication the commutativity is lost, ie multiplicative operation
can no longer be a commutative group.

A2. (F*;-,~') —is (an Abelian) group with neutral element 1 € F.
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The physical structure of rank (n, m

From the Fields to the Right neardomain

Let’s define a skew field through the field. In the transition from the field to the
skew field in multiplication the commutativity is lost, ie multiplicative operation
can no longer be a commutative group.

A2. (F*;-,~') —is (an Abelian) group with neutral element 1 € F.

In the transition from a field to a Nearfield there is a loss of one of the
distributivities, for example, left distributivity.

Nearfield

A4. left distributivity z(y + 2) # zy + zz, z,y,z € F.
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From the Fields to the Right neardomain

In the transition from a Nearfield to a Neardomain the requirement for the
additive operation to be an abelian group is lost. Now it can be only a loop, ie
the requirement of associativity may not be held

(x+y)+z#x+(y+2),

but the following axioms of Neardomain are held:

Neardomain

Al. (F;+,0) — (is an Abelian group) is an loop with neutral element 0 € F;
Al2.a+b=0=b+a=0;

Al3. Va,b€ F)(3rap € F*) (x+a)+b=x -1ap+ (a+b) forall z € F;
A32. (Vz € F) z-0=0.
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Right neardomain

In passing from a Neardomain to a Right neardomain a few more losses happen.
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The physical structures of the two sets

Right neardomain

In passing from a Neardomain to a Right neardomain a few more losses happen.
First, if in the additive loop (F’;+,0) together with the right subtraction

(z-y)ty=2 (z+y -y==2
there was also the left subtraction
r+(zy) =y, z(T+y) =y,

then in the right neardomain (B;-, +, 1, A) such left subtraction is lost.
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The physical structures of the two sets

Right neardomain

In passing from a Neardomain to a Right neardomain a few more losses happen.
First, if in the additive loop (F’;+,0) together with the right subtraction

(z-y)ty=2 (z+y -y==2
there was also the left subtraction
r+(zy) =y, z(T+y) =y,

then in the right neardomain (B;-, +, 1, A) such left subtraction is lost.
Second, if before there was only one zero element 0 for which

0-2=0,
was fulfilled and now there can be a lot of such zero elements as A C B:

a-r €A ac€A.
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Right neardomain

In passing from a Neardomain to a Right neardomain a few more losses happen.
First, if in the additive loop (F’;+,0) together with the right subtraction

(z-y)ty=2 (z+y -y==2
there was also the left subtraction
r+(zy) =y, z(T+y) =y,

then in the right neardomain (B;-, +, 1, A) such left subtraction is lost.
Second, if before there was only one zero element 0 for which

0-z=0,
was fulfilled and now there can be a lot of such zero elements as A C B:
a-r €A ac€A.

Third - the rest right distributivity is lost.
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Right neardomain

If we define the operation of the left inverse in the additive operation
L: B — Bin the form of L(z) =0 — =z

for which L(z) + z = 0 is valid and
the inverse in the multiplicative operation E(z) =2~ ! ansa z € B* = B\ A4,
for (B*;-,7",1) is a group, whereas in the right neardomain is:
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Right neardomain

If we define the operation of the left inverse in the additive operation
L: B — Bin the form of L(z) =0 — =z
for which L(z) + z = 0 is valid and

the inverse in the multiplicative operation E(z) =2~ ! ansa z € B* = B\ A4,
for (B*;-,7",1) is a group, whereas in the right neardomain is:

L(z+y)-z2=2-FEL(y) Ly -2)+y-z
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Right neardomain

If we define the operation of the left inverse in the additive operation
L: B — Bin the form of L(z) =0 — =z

for which L(z) + z = 0 is valid and
the inverse in the multiplicative operation E(z) =2~ ! ansa z € B* = B\ A4,
for (B*;-,7",1) is a group, whereas in the right neardomain is:

L(z+y)-z=x-EL(y) Lly-2)+y- =z
2.z —y==x-EL*y) y+ L(y):
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Right neardomain

If we define the operation of the left inverse in the additive operation
L: B — Bin the form of L(z) =0 — =z

for which L(z) + z = 0 is valid and
the inverse in the multiplicative operation E(z) =2~ ! ansa z € B* = B\ A4,
for (B*;-,7",1) is a group, whereas in the right neardomain is:

L(z+y)-z2=2-FEL(y) - Lly-2)+y-z
2 z—y=a-EL*y) y+ L(y);
3L (z+y)+z==z-(L(z) —y) - Lly+2) + (y+2), npn y # L(2)
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The physical structure of rank (n, m)

Right neardomain

If we define the operation of the left inverse in the additive operation
L: B — Bin the form of L(z) =0 — =z

for which L(z) + z = 0 is valid and
the inverse in the multiplicative operation E(z) =2~ ! ansa z € B* = B\ A4,
for (B*;-,7",1) is a group, whereas in the right neardomain is:

lL(x+y) 2=z -EL(y) - L(y-2)+y- 2
2.x—y==z-EL(y)-y+ L(y);

31. (z+y)+z=a-(L(z) —y)" - Lly+2)+ (y+2), npn y # L(z)
32. (x+L(2) +2=x-EL*(2) - 2

satisfied.
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The physical structure of rank (3,2)

Above the Right neardomain (B;-, +,1, A), with the function of
flz,y,z) =x-(y — z) + z for z,y, z € B we can construct a group with

multiplication:
( x1 ) ( 11 ): < f(w1,y1,92) )
T2 Y2 f(z2,y1,92) )

This is the multiplication group of two-dimensional matrix of columns. In a
sense, this is a generalization of matrix multiplication.
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The physical structure of rank (3,2)

Above the Right neardomain (B;-, +,1, A), with the function of
flz,y,z) =x-(y — z) + z for z,y, z € B we can construct a group with

multiplication:
( x1 ) ( 11 ): < f(w1,y1,92) )
T2 Y2 f(z2,y1,92) )

This is the multiplication group of two-dimensional matrix of columns. In a
sense, this is a generalization of matrix multiplication.

Then the physical structure of rank (3,2) on the sets M = B, 9 C B? can be
constructed using the function f: 9 x 9 — B in the form of

fl,a) = f(xs,€a, ha), where z; € M, (Ea, o) € N.

The function of g can be written using the function of f and the generalized
matrix multiplication of matrices—columns in the form of:
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The physical structures of the two sets

Above the Right neardomain (B;-, +,1, A), with the function of
flz,y,z) =x-(y — z) + z for z,y, z € B we can construct a group with

multiplication:
( x1 ) ( 11 ): < f(w1,y1,92) )
T2 Y2 f(z2,y1,92) )

This is the multiplication group of two-dimensional matrix of columns. In a
sense, this is a generalization of matrix multiplication.

Then the physical structure of rank (3,2) on the sets M = B, 9 C B? can be
constructed using the function f: 9 x 9 — B in the form of

fl,a) = f(xs,€a, ha), where z; € M, (Ea, o) € N.

The function of g can be written using the function of f and the generalized
matrix multiplication of matrices—columns in the form of:

flia)=f (f(z:ﬁ)a( ff((ig)) )( JJ:((IZ]C;)) )>

Here are some examples of the right neardomains over B = R?:
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The physical structure of rank (3,2

(w1, 22) - (Y1,y2) = (T1Y1 + x2y2, T1Y2 + 22y1), (¢ = —1,0,1),
(z1,22) ® (y1,y2) = (1 + y1, 22 + Y2).

Andrey A. Simonov The generalization of matrix multipli
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The physical structure of rank (3,2)

(w1, 22) - (Y1,y2) = (T1Y1 + x2y2, T1Y2 + 22y1), (¢ = —1,0,1),
(z1,22) ® (y1,y2) = (1 + y1, 22 + Y2).

(w1, 22) - (y1,42) = (191, T192 + T2y7), c € [0;1),
(z1,22) ® (y1,y2) = (21 + Y1, %2 + Y2).
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The physical structure of rank (3,2)

Solution 1

(w1, 22) - (Y1,y2) = (T1Y1 + x2y2, T1Y2 + 22y1), (¢ = —1,0,1),
(z1,22) ® (y1,y2) = (1 + y1, 22 + Y2).

Solution 2

(w1, 22) - (y1,42) = (191, T192 + T2y7), c € [0;1),
(z1,22) ® (y1,y2) = (21 + Y1, %2 + Y2).

Solution 3

(z1,22) - (y1,42) = (@1y1, T1Y2 + T2y + (21 — Daryi In|ua|),
(1, 22) © (y1,92) = (21 + Y1, 22 + y2 + 2z191 In|ys]).

A,

Andrey A. Simonov
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The physical structures of the two sets

The physical structure of rank (3,2)

Solution 1

(w1, 22) - (Y1,y2) = (T1Y1 + x2y2, T1Y2 + 22y1), (¢ = —1,0,1),
(z1,22) ® (y1,y2) = (1 + y1, 22 + Y2).

Solution 2

(w1, 22) - (y1,42) = (191, T192 + T2y7), c € [0;1),
(z1,22) ® (y1,y2) = (21 + Y1, %2 + Y2).

Solution 3

(z1,22) - (y1,42) = (@1y1, T1Y2 + T2y + (21 — Daryi In|ua|),
(1, 22) © (y1,92) = (21 + Y1, 22 + y2 + 2z191 In|ys]).

| A

Solution 4

(z1,22) - (y1,92) = (T1y1, T1y2 + 22),
(z1,22) @ (Y1,42) = (132 — T1y2, (172 — T1y2) 2 — T1).
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The physical structure of rank (3,2)

A right neardomain can be written in the equivalent form, but without the
additive operation. We construct a unary operation @2 : B — B in the form
p2(z) =x(0 — 1) + 1 = b+ 1, for which the following identities

o3(x) = x.

@2(p2(2)2(y)) = @2(z2(y ™))y
are true.
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The physical structure of rank (3,2)

A right neardomain can be written in the equivalent form, but without the
additive operation. We construct a unary operation @2 : B — B in the form
p2(z) =x(0 — 1) + 1 = b+ 1, for which the following identities

gog(:c) =z.

@2(p2(2)2(y)) = @2(z2(y ™))y
are true.

Theorem. The right neardomain (B;-, +,1, A) and the algebraic system
(B;-, 7', 2, A) are rationally equivalent.

Andrey A. Simonov The generalization of matrix multiplication



The physical structure of ran
The physical structure of ran

The physical structures of the two sets The ph\:/sical ETOEO 60 o

The physical structure of rank (3,2)

A right neardomain can be written in the equivalent form, but without the
additive operation. We construct a unary operation @2 : B — B in the form
p2(z) =x(0 — 1) + 1 = b+ 1, for which the following identities

gog(:c) =z.

p2(p2(2)p2(y)) = 2(zp2(y ™))y
are true.
Theorem. The right neardomain (B;-, +,1, A) and the algebraic system
(B;-, 7', 2, A) are rationally equivalent.
Then the function f of the physical structure of rank (3,2) can be written as:

fe,2) (@ y1,92) = 2(y1 — y2) + y2 = w2 (22 (192 1))y
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The physical structure of rank (4,2)

If the algebraic system (B;-,” ! 2, A) has such unary operation as
p3 : B — B, for which the

@3(p3(x)es(y)) = ws(zes(y™ "))y

is performed. And if the identity p3@2p3 = w2302, correct, then we can
construct the function

fay (@ y1,y2,3) = 03 (fa.2) (@, 03(y1y5 ), 3 (y295 1)) ¥s.

With this function we can construct the group multiplication of the
vector—column:

1 Y1 fa2) (@1, 91,92, 93)
T2 v2 | = fao(x2,y1,y2,y3)
T3 Y3 fa2)(®3,y1,92,93)
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The physical structure of rank (4,2)

If the algebraic system (B;-,” ! 2, A) has such unary operation as
p3 : B — B, for which the

@3(p3(x)es(y)) = ws(zes(y™ "))y

is performed. And if the identity p3@2p3 = w2302, correct, then we can
construct the function

fay (@ y1,y2,3) = 03 (fa.2) (@, 03(y1y5 ), 3 (y295 1)) ¥s.

With this function we can construct the group multiplication of the
vector—column:

1 Y1 fa2) (@1, 91,92, 93)
T2 v2 | = fao(x2,y1,y2,y3)
T3 Y3 fa2)(®3,y1,92,93)

Over an arbitrary field F', we can construct a function @s(z) = =1, then the
corresponding group will be isomorphic to the group of projective
transformations of the given field.
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The physical structure of rank (n,2)

The same situation is repeated in the construction the physical structure of
rank (n 4 1,2). If the algebraic system (B;-, "', @2,...,0n_1) has a unary
operation ¢,, for which

Pn(Pn(T)Pn(y)) = @nlzen(y™))y.

is fulfilled and identities
PnPiPn = PiPnPi,

for i € {2,...,n — 1}, are correct, then we can construct the function

fonr1,2) (@Y1, yn) = on (Fou) (@ 0n(1yn ), - @n(Un-1Yn ) Yn.
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The physical structure of rank (n 4+ 1,n 4+ 1)

Over the set R there are two and only two non-equivalent solutions for the
physical structure of rank (n + 1,n + 1) (Mikchailichenko G.G., 1970):
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tructure of rank (n

The physical structure of rank (n 4+ 1,n 4+ 1)

Over the set R there are two and only two non-equivalent solutions for the
physical structure of rank (n + 1,n + 1) (Mikchailichenko G.G., 1970):

fl(iya) - x1§1 +...+ $n—1§n—1 + x7u£n7
fliv,an) oo f(in, omga)

fling1,01) -+ flint1, 0mt1)
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The physical structure of rank (n 4+ 1,n 4+ 1)

Over the set R there are two and only two non-equivalent solutions for the
physical structure of rank (n + 1,n + 1) (Mikchailichenko G.G., 1970):

fl (27 a) = x1§1 +...+ $n—1§n—1 + x7u£n7

fl,a1) oo f(in, ant1)

fling1,01) -+ flint1, 0mt1)

f2(7:706) == xlé-l +...+ xnflé-nfl +xn + §n7

1 f@r,e1) -+ f(i1, ang1)
Do = . . . . =0,
1 fling1,01) -+ fint1, 0ng1)
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The physical structure of rank (n 4+ 1,n 4+ 1)

It is well known that using a bilinear function f; : R™ x R™ — R we can
construct the usual matrix multiplication. What can the second solution
f2 : R™ x R™ — R be connected with?
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The physical structure of rank (n 4+ 1,n 4+ 1)

It is well known that using a bilinear function f; : R™ x R™ — R we can
construct the usual matrix multiplication. What can the second solution
f2 : R™ x R™ — R be connected with?

With the function f5 in the equivalent record

n—1

Fo(@1, e Ty Yty e ey Yn) = Z(xu —2n)(Yp — Yn) + Tn + Yn.

p=1

it is also possible to construct, but a generalized matrix multiplication AB = C
for square matrices A, B, C of dimension n with the usual multiplication rule
string into a column for the multiplied matrices:

blj
Cij = il Qin

b

but built with another function f3.
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The generalization of matrix multiplication

You can verify that the product built by using the function f3 is associative,
and the matrices with condition

1z - T1n
£0
1 Tnl Tnn

form a group.
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The generalization of matrix multiplication

You can verify that the product built by using the function f3 is associative,
and the matrices with condition

0 1 1
1 x1n1 Tin

£0
1 Tnl e Tnn

form a group.
This result can be generalized to an arbitrary case, ie
Theorem (Simonov A.A., 2004) The physical structure of rank (m + 1,n + 1)
with a function
fMxN—B

is equivalent to a generalized matrix multiplication with the function

f':B"xB™ = B.
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Conclusion

Conclusion.
The requirement that a law or relations between the objects of the measured
values of the two sets results to:

1. The generalization of matrix multiplication,

2. the emergence of algebraic systems which differ from the fields,
near-fields and rings, to the emergence of right neardomain.
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Conclusion

Conclusion.
The requirement that a law or relations between the objects of the measured
values of the two sets results to:

1. The generalization of matrix multiplication,

2. the emergence of algebraic systems which differ from the fields,
near-fields and rings, to the emergence of right neardomain.

Hypothesis

The absence of the right neardomain associativity and partly distributivity is
responsible for the violation of CP symmetry in the microcosm, the difference
between the right and the left, and a violation of the superposition of quantum
states at higher energies.
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The physical structures of the two sets

Conclusion

Thank you very much!
For more information visit
www.tphs.info

or
www.TdC.pd
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