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Examples
The axioms of physical structures

The physical structures of the two sets

Examples of physical structures

1. Euclidean plane,
2. Ohm's Law.

The axioms of physical structures

1. The algebraic system of axioms,
3. Group identi�cation of physical structures.

Solutions of physical structures

1. The physical structure of the two sets:
à) The physical structure of rank (2, 2),
á) The physical structure of rank (3, 2),
â) The physical structure of rank (n,m).
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Examples
The axioms of physical structures

The physical structures of the two sets

Euclidean plane
Ohm's Law

What is a physical law? On the one hand, it is a restriction? On the other side,
on the basis of available data, the law allows us to make a prediction.
But what to consider under relations and what is (characterizes) a stable type?
In 1960s Kulakov suggested the mathematical interpretation of the law
concepts. Then several results, concerning the existence and the possible forms
of the relations, were achieved.
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Euclidean plane
Ohm's Law

To characterize the problem, let's turn to some examples. In particular, we are
going to have a look at the geometry �eld. Can we say that all the points are
somehow linked with each other? If yes, then how exactly these links are
established? By inspecting the distances between the points, we can make a
conclusion that the points are located on the same line, space etc. Let's
consider the �nite set of M = {i1, i2, . . . , in}, consisting of n randomly located
points belonging to the Euclidean plane. Can we say that even with the
locations being absolutely random, for every point of M there exists a
well-de�ned law? In order to �nd it, we consider all possible pairs of points of
the set M. The amount of such pairs is n(n−1)

2
.
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Euclidean plane
Ohm's Law

Euclidean plane

Matching the distance `ik =
√

(xi − xk)2 + (yi − yk)2 to the each pair of
points i, k ∈M, we get a set of data, obtained from the experiment, which
gives a complete characterization of the set M. We can present this data in a
form of the following matrix:

i1 i2 i3 . . . in
i1 0 `12 `13 . . . `1n
i2 `12 0 `23 . . . `2n
i3 `13 `23 0 . . . `3n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
in `1n `2n `3n . . . 0
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The physical structures of the two sets

Euclidean plane
Ohm's Law

The volume of the simplex

So, for every four points i, k,m, n ∈M of Euclidean plane M there exists a
functional dependence between their relative positions, which doesn't depend
on the points choice: ∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 `2ik `2im `2in
1 `2ik 0 `2km `2kn
1 `2im `2km 0 `2mn
1 `2in `2kn `2mn 0

∣∣∣∣∣∣∣∣∣∣
= 0.

This determinant is equal (up to a factor) to the square of the
three-dimensional simplex, constructed on points i, k,m, n ∈M.
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Euclidean plane
Ohm's Law

The volume of the simplex

If we have zero three-dimensional volume, then all the points are on the same
plane.
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Euclidean plane
Ohm's Law

Cayley-Menger Determinant

To expand the previous example, we can take two sets of points i, j, k,m ∈M
and α, β, γ, δ ∈M of Euclidean plane M and consider the relative distances
between the sets of points with Greek and Latin indexes. For these random sets
there exists a functional dependence between their relative distances, which is
expressed by the Caly-Manger determinant being zero:∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 `2iα `2iβ `2iγ `2iδ
1 `2jα `2jβ `2jγ `2jδ
1 `2kα `2kβ `2kγ `2kδ
1 `2mα `2mβ `2kγ `2mδ

∣∣∣∣∣∣∣∣∣∣
= 0.
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Euclidean plane
Ohm's Law

Let's consider the objects of the di�erent kind (contradicting the geometry,
where all objects belong to the same set). In this case, two points from two
di�erent sets i ∈M, α ∈ N are matched by the result Jiα of the measurement
procedure, which serves as an analogue of distance. Consider the set of
conductors M and the set of current source N. For optional i, k,m ∈M and
α, β ∈ N measure by ammeter the electric current in the following chain:

����
�
�
��

i

α

Jiα
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The physical structures of the two sets

Euclidean plane
Ohm's Law

In this case the ammeter output data Jiα is a distance between the conductor
i and the current source α. Consider three independent conductors i, k,m ∈M
and two optional current sources α, β ∈ N. Measure the six ammeter outputs
J . With the su�cient preciseness, we have:∣∣∣∣∣∣

1 J−1
iα J−1

iβ

1 J−1
kα J−1

kβ

1 J−1
mα J−1

mβ

∣∣∣∣∣∣ = 0,

by these, using the standard points k,m ∈M, β ∈ N we have the well-known
Ohm's law for the whole chain

Jiα =
Eα

Ri + rα
,

where Eα is an electromotive force, rα is an inner resistance of the current
source α and Ri is a resistance of the current i.
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The physical structures of the two sets

The algebraic system of axioms
Group identi�cation of physical structures

In these examples, there are two functions � f and Φ. On the one hand the
function

f : M×N→ R

is an analog of measurement procedure, which assigns to the two elements
i ∈M and α ∈ N of these sets the value fiα of B.
On the other hand, there is a nontrivial function

Φ : Rnm → 0,

Function Φ characterizes the relation of values fiα, when one of them is
calculated upon all others. Next, try to ignore the physical interpretation and
consider this as a mathematical problem.
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The physical structures of the two sets

The algebraic system of axioms
Group identi�cation of physical structures

We consider a generalization, and instead of the set of real numbers R,
consider an arbitrary set. As a function of Φ, consider the function

g : Bnm−1 → B,

which is the distance across all the restsuch.
Note that the functions f and g are partial, that is, not de�ned everywhere, but
on a subset.
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The physical structures of the two sets

The algebraic system of axioms
Group identi�cation of physical structures

Under the physical structure of rank (m+ 1, n+ 1) we mean a many-sorted,
partial algebraic system 〈M,N, B; f, g〉, on the sets M,N, B acting on them
with the operations f, g with axioms.
AI. For maps f : M×N→ B, g : Bm+mn+n → B, on arbitrary tuples

(i0i1 . . . in) ∈Mn+1 and (α0α1 . . . αm) ∈ Nm+1 the identity

f(i0, α0) = g


f(i0, α1) · · · f(i0, αm)

f(i1, α0) f(i1, α1) · · · f(i1, αm)
...

...
. . .

...
f(in, α0) f(in, α1) · · · f(in, αm)

 ,

is correct.

The function g is considered above the elements f(im, αn) ∈ B, constructed
above all pairs (im, αn), excluding (i0, α0).
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The physical structures of the two sets

The algebraic system of axioms
Group identi�cation of physical structures

AII. For all tuples (i1i2 . . . in) ∈Mn and (b1b2 . . . bn) ∈ Bn there exists only

one element α ∈ N, for which the following equalities

f(ik, α) = bk, k ∈ {1, 2, . . . , n}

are true.
AIII. For all tuples (α1α2 . . . αm) ∈ Nm and (b1b2 . . . bm) ∈ Bm there exists

only one element i ∈M for which the following equalities

f(i, αk) = bk, k ∈ {1, 2, . . . ,m}

are true.
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The physical structures of the two sets

The algebraic system of axioms
Group identi�cation of physical structures

In determining the algebraic system their equivalence is naturally de�ned.
De�nition For two many�sorted partial algebras 〈M,N, B; f, g〉 and
〈M′,N′, B′; f ′, g′〉 mapping triples λ : M→M′, χ : N→ N′, ψ : B → B′

de�ne their homomorphism, when the diagrams

M×N
f→ B

(λ× χ) ↓ ↓ ψ
M′ ×N′

f ′→ B′
,

B3 g→ B
ψ3 ↓ ↓ ψ
(B′)3

g′→ B′

are commutative.

De�nition If homomorphisms λ, χ, ψ are bijective, then algebras

〈M,N, B; f, g〉, 〈M′,N′, B′; f ′, g′〉 are isomorphic or equivalent.
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The physical structures of the two sets

The algebraic system of axioms
Group identi�cation of physical structures

The concept of the physical structure can be de�ned in an equivalent group
form, if together with a map f : M×N→ B we also consider two groups of
transformations

χa1,...,amn : M→M, θa1,...,amn : N→ N,

depending on the parameters mn � a1, . . . , amn ∈ B.
We assume that this dependence on the parameters is signi�cant, ie it can't be
eliminated by any replacement of parameters.
The map f de�nes the physical structure of rank (m+ 1, n+ 1), if it is in
harmony with the groups of transformations χa1,...,amn and θa1,...,amn , for
which

f(x, y) = f(χa1,...,amn (x) , θa1,...,amn (y))

is ful�lled. (Mikchailichenko G.G., 1983)
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The axioms of physical structures

The physical structures of the two sets

The physical structure of rank (2, 2)
The physical structure of rank (3,2)
The physical structure of rank (n, 2)
The physical structure of rank (n,m)

The physical structure of rank (2, 2)

The solution of the physical structure of rank (2, 2) over the set R can be
written in the additive f(i, α) = xi + ξα or in the multiplicative form of
f(i, α) = xi · ξα, for which the corresponding functions Φ can be written as

Φ (f(i, α), f(i, β), f(j, α), f(j, β)) =

∣∣∣∣∣∣
0 1 1
1 f(i, α) f(i, β)
1 f(j, α) f(j, β)

∣∣∣∣∣∣ = 0,

Φ (f(i, α), f(i, β), f(j, α), f(j, β)) =

∣∣∣∣ f(i, α) f(i, β)
f(j, α) f(j, β)

∣∣∣∣ = 0.

(Kulakov Y.I., 1968)

Andrey A. Simonov The generalization of matrix multiplication



Examples
The axioms of physical structures

The physical structures of the two sets

The physical structure of rank (2, 2)
The physical structure of rank (3,2)
The physical structure of rank (n, 2)
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The physical structure of rank (2, 2)

The solution of the physical structure of rank (2, 2) exists for any arbitrary
group 〈B; ·,−1, e〉. The function f can be written as f(i, α) = xi · ξα, and the
function g in the form of

f(i, α) = g (f(i, β), f(j, α), f(j, β)) = f(i, β) · f(j, β)−1 · f(j, α).

A group 〈B; ·,−1, e〉 is called an algebraic system on the set B with one binary
operation (·) : B ×B → B, with one unary operation (−1) : B → B, called
inverse and one nullary operation e, for which the following axioms are true:

1. x · (y · z) = (x · y) · z for all x, y, z ∈ B,
2. Nullary operation selects the neutral element e ∈ B of the group e and
x · e = e · x = x for every x ∈ B.
3. Unary operation (−1) : B → B assigns to every element x ∈ B an inverse
one x−1 ∈ B and x · x−1 = x−1 · x = e is true.
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The physical structure of rank (n,m)

The physical structure of rank (2, 2)

The class of physical structures of rank (2, 2) is equivalent to the class of all
groups 〈B; ·,−1, e〉. (Ionin V.K., 1990)

Over the set B = R we can construct only one locally nonisomorphic group �
R, so that f(x, y) = x · y.

There are two locally not isomorphic groups over the set B = R2 and they are
built with the help of a direct product:
G1 = R0 × R0, so that f1(x1, x2, y1, y2) = (x1 · y1, x2 · y2).
and the semidirect product
G2 = Rh R0, so that f2(x1, x2, y1, y2) = (x2 · y1 + x1, x2 · y2).
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Over the set B = R3 seven locally - inequivalent physical structures of rank
(2, 2) can be built (Mikchailichenko G.G., 1996). These solutions correspond to
the following locally nonisomorphic groups:

G1 = R0 × R0 × R0 f1(x, y) = (x1 · y1, x2 · y2, x3 · y3);
G2 = (R× R) h R0 f2(x, y) = (x1 + y1 + x2y3, x2 + y2, x3y3);
G3 = (R× R) h R0 f3(x, y) = (x3y1 + x1, x3(y2 − y1 ln |x3|) + x2, x3y3);
G4 = (R× R) h R0 f4(x, y) = (x3y1 + x1, x

p
3y2 + x2, x3y3);

G5 = (R× R) h R

f5(x, y) =

{
((x1 cos(y3)− x2 sin(y3)) exp (γy3) + y1
(x1 sin(y3) + x2 cos(y3)) exp (γy3) + y2, x3 + y3)

;

G6 ≈ SO(3),
G7 ≈ SL(2,R).

Over the set B = R4 one can build 11 locally inequivalent physical structures
of rank (2, 2) (Kirov V.A., 2008).
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If the physical structure of rank (2, 2) can be constructed over an algebra with
one binary operation by the group then for building the physical structure of
rank (3, 2) it requires a richer algebra. Mikchailichenko G.G. showed (1968),
that the physical structure of rank (3, 2) over R with the function

f(i, α) = xiξα + ηα,

can be constructed. Similar solutions can be constructed over an arbitrary �eld,
and even over weaker algebras, such as skew �eld, Near�eld, Neardomain and a
Right neardomain.

Field

F is the �eld
〈
F ; ·,+,−1 ,−, 1, 0

〉
, with the axioms:

À1. 〈F ; +,−, 0〉 is an Abelian group with neutral element 0 ∈ F ,
À2.

〈
F ∗; ·,−1 , 1

〉
is an Abelian group with neutral element 1 ∈ F ∗, where

F ∗ = F \ {0},
A3. Is a right-sided distributivity (x+ y)z = xz + yz,
À4. Is a left-sided distributivity x(y + z) = xy + xz, x, y, z ∈ F .
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From the Fields to the Right neardomain

Let's de�ne a skew �eld through the �eld. In the transition from the �eld to the
skew �eld in multiplication the commutativity is lost, ie multiplicative operation
can no longer be a commutative group.

Skew �eld

À2.
〈
F ∗; ·,−1

〉
� is (an Abelian) group with neutral element 1 ∈ F .

In the transition from a �eld to a Near�eld there is a loss of one of the
distributivities, for example, left distributivity.

Near�eld

À4. left distributivity x(y + z) 6= xy + xz, x, y, z ∈ F .
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The physical structure of rank (3,2)
The physical structure of rank (n, 2)
The physical structure of rank (n,m)

From the Fields to the Right neardomain

In the transition from a Near�eld to a Neardomain the requirement for the
additive operation to be an abelian group is lost. Now it can be only a loop, ie
the requirement of associativity may not be held

(x+ y) + z 6= x+ (y + z),

but the following axioms of Neardomain are held:

Neardomain

À1. 〈F ; +, 0〉 � (is an Abelian group) is an loop with neutral element 0 ∈ F ;
À1.2. a+ b = 0⇒ b+ a = 0;
À1.3. (∀a, b ∈ F )(∃ ra,b ∈ F ∗) (x+ a) + b = x · ra,b + (a+ b) for all x ∈ F ;
À3.2. (∀x ∈ F ) x · 0 = 0.
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The physical structures of the two sets

The physical structure of rank (2, 2)
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Right neardomain

In passing from a Neardomain to a Right neardomain a few more losses happen.
First, if in the additive loop 〈F ; +, 0〉 together with the right subtraction

(x− y) + y = x, (x+ y)− y = x

there was also the left subtraction

x+ (x← y) = y, x← (x+ y) = y,

then in the right neardomain 〈B; ·,+, 1, A〉 such left subtraction is lost.
Second, if before there was only one zero element 0 for which

0 · x = 0,

was ful�lled and now there can be a lot of such zero elements as A ⊂ B:

a · x ∈ A, a ∈ A.

Third - the rest right distributivity is lost.
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The physical structures of the two sets

The physical structure of rank (2, 2)
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Right neardomain

If we de�ne the operation of the left inverse in the additive operation

L : B → B in the form of L(x) = 0− x

for which L(x) + x = 0 is valid and
the inverse in the multiplicative operation E(x) = x−1 äëÿ x ∈ B∗ = B \A,
for 〈B∗; ·,−1 , 1〉 is a group, whereas in the right neardomain is:

1. (x+ y) · z = x · EL(y) · L(y · z) + y · z;
2. x− y = x · EL2(y) · y + L(y);
3.1. (x+ y) + z = x · (L(z)− y)−1 · L(y + z) + (y + z), ïðè y 6= L(z)
3.2. (x+ L(z)) + z = x · EL2(z) · z
satis�ed.
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The axioms of physical structures

The physical structures of the two sets

The physical structure of rank (2, 2)
The physical structure of rank (3,2)
The physical structure of rank (n, 2)
The physical structure of rank (n,m)

The physical structure of rank (3, 2)

Above the Right neardomain 〈B; ·,+, 1, A〉, with the function of
f(x, y, z) = x · (y − z) + z for x, y, z ∈ B we can construct a group with
multiplication: (

x1
x2

)(
y1
y2

)
=

(
f(x1, y1, y2)
f(x2, y1, y2)

)
.

This is the multiplication group of two-dimensional matrix of columns. In a
sense, this is a generalization of matrix multiplication.
Then the physical structure of rank (3,2) on the sets M = B,N ⊂ B2 can be
constructed using the function f : M×N→ B in the form of
f(i, α) = f(xi, ξα, µα), where xi ∈M, (ξα, µα) ∈ N.
The function of g can be written using the function of f and the generalized
matrix multiplication of matrices�columns in the form of:

f(i, α) = f

(
f(i, β),

(
f(j, β)
f(k, β)

)−1(
f(j|α)
f(k, α)

))
.

Here are some examples of the right neardomains over B = R2:
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The physical structure of rank (3, 2)

Solution 1

(x1, x2) · (y1, y2) = (x1y1 + εx2y2, x1y2 + x2y1), (ε = −1, 0, 1),
(x1, x2)⊕ (y1, y2) = (x1 + y1, x2 + y2).

Solution 2

(x1, x2) · (y1, y2) = (x1y1, x1y2 + x2y
c
1), c ∈ [0; 1),

(x1, x2)⊕ (y1, y2) = (x1 + y1, x2 + y2).

Solution 3

(x1, x2) · (y1, y2) = (x1y1, x1y2 + x2y
2
1 + (x1 − 1)x1y

2
1 ln |y1|),

(x1, x2)⊕ (y1, y2) = (x1 + y1, x2 + y2 + 2x1y1 ln |y1|).

Solution 4

(x1, x2) · (y1, y2) = (x1y1, x1y2 + x2),
(x1, x2)⊕ (y1, y2) = (y1x2 − x1y2, (y1x2 − x1y2) y2

y1
− x1

y1
).
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The physical structure of rank (3, 2)

A right neardomain can be written in the equivalent form, but without the
additive operation. We construct a unary operation ϕ2 : B → B in the form
ϕ2(x) = x(0− 1) + 1 = xb+ 1, for which the following identities

ϕ2
2(x) = x.

ϕ2(ϕ2(x)ϕ2(y)) = ϕ2(xϕ2(y−1))y

are true.
Theorem. The right neardomain 〈B; ·,+, 1, A〉 and the algebraic system
〈B; ·,−1 , ϕ2, A〉 are rationally equivalent.
Then the function f of the physical structure of rank (3, 2) can be written as:

f(3,2)(x, y1, y2) = x(y1 − y2) + y2 = ϕ2(xϕ2(y1y
−1
2 ))y2.
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The physical structure of rank (4, 2)

If the algebraic system 〈B; ·,−1 , ϕ2, A〉 has such unary operation as
ϕ3 : B → B, for which the

ϕ3(ϕ3(x)ϕ3(y)) = ϕ3(xϕ3(y−1))y.

is performed. And if the identity ϕ3ϕ2ϕ3 = ϕ2ϕ3ϕ2, correct, then we can
construct the function

f(4,2)(x, y1, y2, y3) = ϕ3

(
f(3,2)(x, ϕ3(y1y

−1
3 ), ϕ3(y2y

−1
3 ))

)
y3.

With this function we can construct the group multiplication of the
vector�column: x1

x2
x3

 y1
y2
y3

 =

 f(4,2)(x1, y1, y2, y3)
f(4,2)(x2, y1, y2, y3)
f(4,2)(x3, y1, y2, y3)

 .

Over an arbitrary �eld F , we can construct a function ϕ3(x) = x−1
x

, then the
corresponding group will be isomorphic to the group of projective
transformations of the given �eld.
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The physical structure of rank (n, 2)

The same situation is repeated in the construction the physical structure of
rank (n+ 1, 2). If the algebraic system 〈B; ·,−1 , ϕ2, . . . , ϕn−1〉 has a unary
operation ϕn for which

ϕn(ϕn(x)ϕn(y)) = ϕn(xϕn(y−1))y.

is ful�lled and identities
ϕnϕiϕn = ϕiϕnϕi,

for i ∈ {2, . . . , n− 1}, are correct, then we can construct the function

f(n+1,2)(x, y1, . . . , yn) = ϕn
(
f(n,2)(x, ϕn(y1y

−1
n ), . . . , ϕn(yn−1y

−1
n ))

)
yn.
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The axioms of physical structures

The physical structures of the two sets

The physical structure of rank (2, 2)
The physical structure of rank (3,2)
The physical structure of rank (n, 2)
The physical structure of rank (n,m)

The physical structure of rank (n+ 1, n+ 1)

Over the set R there are two and only two non-equivalent solutions for the
physical structure of rank (n+ 1, n+ 1) (Mikchailichenko G.G., 1970):

f1(i, α) = x1ξ1 + . . .+ xn−1ξn−1 + xnξn,

Φ1 =

∣∣∣∣∣∣∣
f(i1, α1) · · · f(i1, αn+1)

...
. . .

...
f(in+1, α1) · · · f(in+1, αn+1)

∣∣∣∣∣∣∣ = 0,



f2(i, α) = x1ξ1 + . . .+ xn−1ξn−1 + xn + ξn,

Φ2 =

∣∣∣∣∣∣∣∣∣
0 1 · · · 1
1 f(i1, α1) · · · f(i1, αn+1)
...

...
. . .

...
1 f(in+1, α1) · · · f(in+1, αn+1)

∣∣∣∣∣∣∣∣∣ = 0,
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The physical structure of rank (2, 2)
The physical structure of rank (3,2)
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The physical structure of rank (n+ 1, n+ 1)

It is well known that using a bilinear function f1 : Rn × Rn → R we can
construct the usual matrix multiplication. What can the second solution
f2 : Rn × Rn → R be connected with?
With the function f ′2 in the equivalent record

f ′2(x1, . . . , xn, y1, . . . , yn) =

n−1∑
µ=1

(xµ − xn)(yµ − yn) + xn + yn.

it is also possible to construct, but a generalized matrix multiplication AB = C
for square matrices A,B,C of dimension n with the usual multiplication rule
string into a column for the multiplied matrices:

cij =

 · · · · · · · · ·
ai1 · · · ain
· · · · · · · · ·

 · · · b1j · · ·
· · · · · · · · ·
· · · bnj · · ·


but built with another function f ′2.
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string into a column for the multiplied matrices:

cij =

 · · · · · · · · ·
ai1 · · · ain
· · · · · · · · ·

 · · · b1j · · ·
· · · · · · · · ·
· · · bnj · · ·


but built with another function f ′2.
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Examples
The axioms of physical structures

The physical structures of the two sets

The physical structure of rank (2, 2)
The physical structure of rank (3,2)
The physical structure of rank (n, 2)
The physical structure of rank (n,m)

The generalization of matrix multiplication

You can verify that the product built by using the function f ′2 is associative,
and the matrices with condition∣∣∣∣∣∣∣∣∣

0 1 · · · 1
1 x11 · · · x1n
...

...
. . .

...
1 xn1 · · · xnn

∣∣∣∣∣∣∣∣∣ 6= 0

form a group.
This result can be generalized to an arbitrary case, ie
Theorem (Simonov A.A., 2004) The physical structure of rank (m+ 1, n+ 1)
with a function

f : M×N→ B

is equivalent to a generalized matrix multiplication with the function

f ′ : Bn ×Bm → B.
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Examples
The axioms of physical structures

The physical structures of the two sets

The physical structure of rank (2, 2)
The physical structure of rank (3,2)
The physical structure of rank (n, 2)
The physical structure of rank (n,m)

Conclusion

Conclusion.

The requirement that a law or relations between the objects of the measured
values of the two sets results to:

1. The generalization of matrix multiplication,
2. the emergence of algebraic systems which di�er from the �elds,

near-�elds and rings, to the emergence of right neardomain.

Hypothesis

The absence of the right neardomain associativity and partly distributivity is
responsible for the violation of CP symmetry in the microcosm, the di�erence
between the right and the left, and a violation of the superposition of quantum
states at higher energies.
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Examples
The axioms of physical structures

The physical structures of the two sets

The physical structure of rank (2, 2)
The physical structure of rank (3,2)
The physical structure of rank (n, 2)
The physical structure of rank (n,m)

Conclusion

Thank you very much!
For more information visit

www.tphs.info
or

www.òôñ.ðô
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